

Il regime del Superbonus 110% e degli altri bonus alla luce delle ultime modifiche e l'ottimizzazione del rendimento energetico e del comfort indoor degli edifici

15 dicembre 2023 | 09.30 - 13.00

Ing. IVO CERBONI

Sostituire la caldaia con la pompa di calore è una scelta valida? Esempi pratici e fake news pubblicitari.

Salubrità indoor dopo la sostituzione dei serramenti e l'installazione del cappotto: quali rischi?

Dalla ventilazione meccanica (la grande "esclusa") alla ventilazione meccanica termodinamica. Casi pratici.

IMPIANTI TERMICI PER ECOBONUS x %

COS'È UN IMPIANTO TERMICO ??

(...) l'impianto di climatizzazione invernale deve essere fisso, può essere alimentato con qualsiasi vettore energetico e non ha limiti sulla potenza minima inferiore. Ai medesimi fini, inoltre, **l'impianto deve essere** funzionante o riattivabile con un intervento di manutenzione, anche straordinaria. Nella circolare 24/E del 2020 è stato precisato, al

Definizione di impianto termico dall'11 giugno 2020:

"impianto termico: impianto tecnologico fisso destinato ai servizi di climatizzazione invernale o estiva degli ambienti, con o senza produzione di acqua calda sanitaria, o destinato alla sola produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato, comprendente eventuali sistemi di produzione, distribuzione, accumule accinizzazione del calore nonché gli organi ai regulazione e controllo, eventualmente combinato con impianti di ventilazione.

Non sono considerati impianti termici i sistemi dedicati esclusivamente ana produzione di acqua calda sanitaria al servizio di singole unità

immobiliari ad uso residenziale ed assimilate.

QUALI IMPIANTI TERMICI SONO AMMESSI ?

CALDAIE

Impianti a condensazione, con efficienza almeno pari alla classe A di prodotto prevista dal regolamento delegato (UE) n. 811/2013 della Commissione del 18 febbraio 2013,

Caldaie a biomassa aventi prestazioni emissive coni valori previsti almeno per la classe 5 stelle individuata ai sensi del regolamento di cui al DM 7novembre 2017, n. 186

COLLETTORI SOLARI TERMICI

Pompe di Calore

COP minimo EN14511

EER minimo EN14511

Importantissimo!!!

5-10-2020

GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA

Serie generale - n. 246

ALLEGATO F

Requisiti delle pompe di calore

a) per le pompe di calore elettriche il coefficiente di prestazione istantanei (COP) deve essere almeno

dichiarata e garantita

rabena i - Coemelenti di prestazione minimi per pompe di calore elettriche

Tipo di pompa di calore	Ambiente estema [96]	A h : t	СОР	EER
Ambiente esterno/interno	Ambiente esterno [°C]	Ambiente interno [°C]		
aria/aria	Bulbo secco all'entrata: 7 Bulbo umido all'entrata: 6	Bulbo secco all'entrata: 20 Bulbo umido all'entrata: 15	3,9 6	3,4
aria/acqua potenza termica utile riscaldamento ≤ 35 kW	Bulbo secco all'entrata: 7 Bulbo umido all'entrata: 6	Temperatura entrata: 30 Temperatura uscita: 35	4,1	3,8
aria/acqua potenza termica utile riscaldamento >35 kW	Bulbo secco all'entrata: 7 Bulbo umido all'entrata: 6	Temperatura entrata: 30 Temperatura uscita: 35	3,8	3,5

Importantissimo!!!

dichiarata e garantita

In pratica **NON è sufficiente** avere l'autodicharazione delle prestazioni COP e EER del costruttore (nel 99,9999999% dei casi tutti pensano invece che basti quella!!!)

È invece ASSOLUTAMENTE NECESSARIO E OBBLIGATORIO che ci sia un **test report rilasciato da un istituto di prove certificato e accreditato** che GARANTISCA i valori di COP ed EER secondo EN14511

Importantissimo!!!

Ricordiamoci che risponde in primis sempre chi firma \rightarrow l'ASSEVERATORE e in caso di informazioni sbagliate o insufficienti risponde sempre lui!

Nel passato NON era obbligatorio GARANTIRE le performance delle pompe di calore, perché era sufficiente MISURARE (cfr. decreto requisiti minimi 2015).

Con gli Ecobonus invece lo Stato ci mette i soldi, e quindi giustamente vuole delle GARANZIE

Tabella 1. - Interventi ammessi (*)

n. 186

1 adelia 1 Interventi ammessi (*)								
Tipo Intervento	Riferimento Normativo	Definizione intervento	Riferimento all'articolo 2 C. 1	Detrazione massima ammissibile € (*)	Spesa massima ammissibile €	Aliquota Detrazione %	Numero di anni su cui ripartire la detrazione	
Collettori Solari DEC 34/ C let Artic DEC LE	lett. b) Articolo 119 DECRETO- LEGGE 34/2020	k) installazione di collettori solari termici	lett. d)		(\$)	110%	5	
	C. 1 lett. c) Articolo 119 DECRETO- LEGGE 34/2020		lett. d)		30.000	110%	5	
artic DEC	lett. b), C.1 articolo 119 DECRETO- LEGGE 34/2020	n) caldaie a condensazione con ηs maggiore o uguale al 90% su impianti centralizzati.	lett. e), p. iii		(\$)	110 %	5	
ianto di clima ale e produzi calda sanit	atticolo 119 DECRETO- LEGGE 34/2020 lett. c), C.1 articolo 119 DECRETO- LEGGE 34/2020			30.000	110 %	5 _	3	
Imp invern	lett. b) C.1 articolo 119 DECRETO- LEGGE 34/2020	s) sostituzione, integrale o parziale, di impianti di climatizzazione invernale con impianti dotati di apparecchi ibridi	lett. e), p.		(\$)	110 %	5	
	lett. c) C.1 articolo 119 DECRETO- LEGGE		viii		30.000	110 %	5	
	lett. b) C.1 articolo 119 DECRETO- LEGGE 34/2020	q) sostituzione, integrale o parziale, di impianti di climatizzazione invernale con impianti dotati di pompe di calore ad alta efficienza.			(\$)	110 %	5	
	lett. c) C.1 articolo 119 DECRETO- LEGGE 34/2020		lett. e), p. vi		30.000	110 %	5	
	lett. b) e c) C.1 articolo 119 DECRETO- LEGGE 34/2020	w) sostituzione di scaldacqua con scaldacqua a pompa di calore dedicati alla produzione di acqua calda sanitaria.	lett. e), p. xii		(\$)	110 %	5	
	lett. c) C.1 articolo 119 DECRETO- LEGGE 34/2020	impianti di climatizzazione invernale esistenti caldaie a biomassa aventi prestazioni emissive con i valori previsti almeno per la classe 5 stelle individuata ai sensi del regolamento di cui al decreto del Ministro dell'ambiente e della tutela del territorio e del mare 7 novembre 2017.	lett. e), p. xiv		30.000	110%	5	

«L'impianto può essere composto da più macchine e comprende anche tutti i terminali e la rete di distribuzione del fluido termovettore..»

(***) Possono comprendere, con gli stessi limiti di spesa e con la stessa percentuale di detrazione, la sostituzione degli infissi e l'installazione delle schermature solari insistenti sulle stesse pareti oggetto degli interventi e gli

"1'installazione di più macchine

Ma è sempre ver che conviene sostituire una caldaia a gas con una pompa di calore???

Ragioniamo per casi pratici fatti durante il SUPERBONUS

(salto di almeno 2 classi energetiche)

CAPPOTTO <50% superficie disperdente

CAPPOTTO >50% superficie disperdente

SERRAMENTI NON sostituiti

SERRAMENTI sostituiti

FOTOVOLTAICO NON installato

FOTOVOLTAICO installato

Facciamo i conti: 0,75 €/smc metano ≈ 10 kWh termici 0,075 €/kWh termico 0,35 €/kWh elettrico quanti kWh termici fa una PDC con 1kW elettrico? NON SI DEVE MAI GUARDARE IL COP DI UNA POMPA DI CALORE MA IL SUO SCOP

SCOP = Seasonal COP è il COP calcolato per tutto l'inverno Il progettista termotecnico deve valutare la performance di una PDC esclusivamente con lo SCOP SCOP medio buona PDC = 4-5,2 per impianto radiante a 35°C

Pavimento radiante(<35°C)

Le PDC consumano molto di più con temperature dell'acqua più alte, mediamente +6% per ogni °C in più di 35°C, quindi lo SCOP si abbassa drasticamente

SCOP 2,2

SCOP 4

Rifacciamo i conti:
0,075 €/kWh termico gas
0,35 €/kWh elettrico

```
RADIANTE a 35°C - SCOP 4
0,35 = 0,088 €/kWh termico(+17%)
TERMOSIFONE a 45°C - SCOP 2,2
0,35 = 0,16 €/kWh termico(+213% !!!)
2,2
                        IL DOPPIO!!!
```

QUINDI

Il consumo elettrico in € della PDC costa di più del consumo di gas in €

IL PROBLEMA È QUANDO NON SI RIDUCE <u>DRASTICAMENTE</u> IL CONSUMO DELL'EDIFICIO E NON C'È IL FOTOVOLTAICO! In pratica quindi la grande convenienza a sostituire la CALDAIA con una PDC si ha solo a queste condizioni

CAPPOTTO >50% superficie disperdente

SERRAMENTI sostituiti

FOTOVOLTAICO installato

FAKE NEWS!

Purtroppo si sentono e si vedono molti spot pubblicitari che suggeriscono di sostituire la vecchia caldaia con una PDC solo perché ci sono i BONUS FISCALI! Il rischio è non valutare l'effettiva convenienza

PRINCIPIO PROGETTAZIONE IMPIANTI PER IL SUPERBONUS

Devono essere replicate le stesse funzioni dell'impianto esistente: Riscaldamento - ACS - raffrescamento

L'obiettivo di un buon progetto di impianto non è solo soddisfare i kilowatt della exL.10, bensì progettare il comfort indoor cominciando dalla salubrità dell'aria!

La sfida!

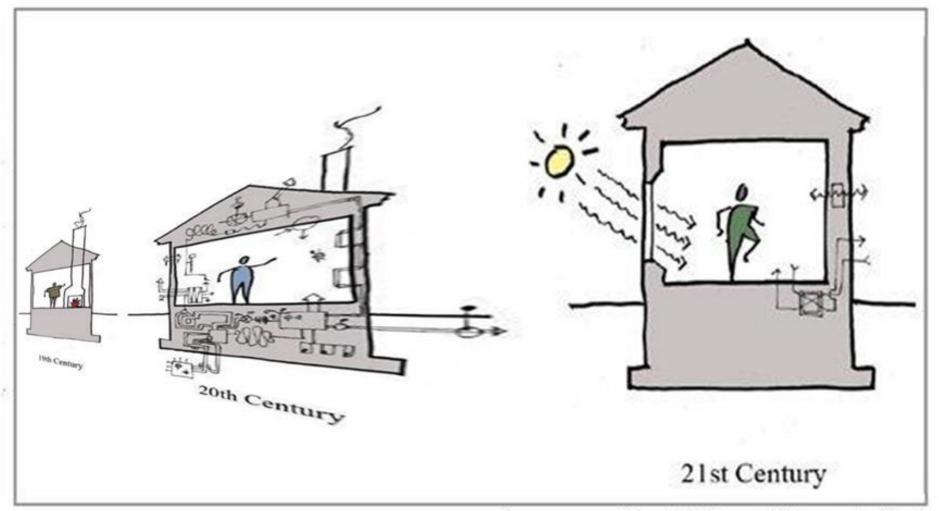


image source: Albert, Righter and Tittmann Architects

COS'È IL COMFORT

Nel gergo comune ci si limita ad una definizione troppo semplificata

....Una buona temperatura...

....Una buona umidità......

in letteratura scientifica invece il COMFORT è suddiviso in ben 22 categorie!

TERMICO

Temperatura dell'aria

Temperatura media radiante delle superfici Velocità dell'aria

Umidità relativa dell'aria

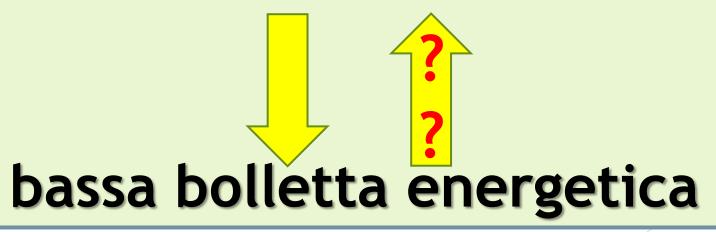
ACUSTICO

Frequenza del livello sonoro Riverbero ambientale

Illuminazione naturale Illuminazione artificiale Contrasto Angolazione della luce Distribuzione nell'ambiente abitativo Grado colorimetrico Schema colorimetrico Rapporto visuale con l'esterno

OLFATTIVO

Concentrazione cattivi odori Concentrazione CO2 Concentrazione di gas...RADON!!!! Concentrazione di polveri


ALTRO

Pressione dell'aria interna Carica elettrostatica dell'aria interna Tattile sensibile

Impianto moderno

Una bassa bolletta energetica equivale sempre ad un alto comfort??

alto comfort

Cos'è un involucro FATTO BENE?

- a) Buon/ottimo isolamento invernale per contenere il calore interno
- b) Buona/ottima resistenza al calore estivo per irraggiamento e convezione
- c) Buona/ottima tenuta all'aria

Il calcolo delle dispersioni

RIASSUNTO DISPERSIONI DELLE ZONE

Opzioni di calcolo:

Metodologia di calcolo

Vicini presenti

Coefficiente di sicurezza adottato

1,05 -

Dati geometrici delle zone termiche:

Zona	Descriziono	e	[m³]	V _{netto} Γm ³]		S _u n²]		n ²]	S [m²]		S/V [-]
1	B&B-PT					17,19	1.	58,97	374,	41	0,72
2	ABITAZIONE	Φ			22,32	1.	51,03	367,69		0,76	
F-111			[W]		39,51	31	10,00	742,	10	0,74
Fabbis	ogno di potenza d			200							
Zona	Descrizione		3991			Φ _{rh} [W]		Φ _{hi} [W]		Φ _{hl sic} [W]	
1	B&B-PT						0		5421		5692
2	ABITAZIONE			3030)		0		4331		4548
							0		9752		10239
<u>Legenda simboli</u>				7021							
V	Volume lordo			<i>/ UZ1</i>							
V_{netto}	Volume netto					ļ					

Ex Legge 10

Il calcolo della nuova dispersione dell'involucro postintervento di efficientamento, ci da un indice di qualità termica del nuovo edificio. In pratica quello che conta è solo il

valore di

Potenza dispersa per trasmissione

Φ_{ve} Potenza dispersa per ventilazione

Superficie in pianta netta

Φ_{rh} Potenza dispersa per intermittenza

Φ_{hl} Potenza totale dispersa

TRASMISSIONE

In numeri

A) Potenza dispersione TRASMISSIONE

```
buono < 40 W/mq
ottimo < 25 W/mq
```

B) Fattore attenuazione copertura

```
buono < 0,25
ottimo < 0,15
```

C) BlowerDoorTest a 50 Pa

```
buono n50 < 2,0 V/h
ottimo n50 < 1,0 V/h
```

.....E LA VENTILAZIONE MECCANICA CONTROLLATA PER LA SALUBRITÀ E QUALITÀ DELL'ARIA INDOOR???

VMC con recupero di calore NON è considerata detraibile per **Ecobonus x%** Allo stato attuale Puri STATA LA ufficiel XINC E STATA LA LA VINCE STATA DAC GRANDE ESCLUSA DAGLI RANDE LOS QUASI ECOBONUS!...quasi ECOBONUS!...e sia presente Lione di impianto termico, NON è citata nella lista di tipologie impianti ammessi

Allo stato attuale è ammessa ESCLUSIVAMENTE:

FAQ Enea 16.D

Come UNICA soluzione possibile per evitare la formazione di muffa nei ponti termici non risolvibili, con relazione tecnica

in un impianto di climatizzazione invernale a tutt'aria, solo dimostrando un risparmio energetico rispetto al ricambio naturale secondo UNI TS 11300-1

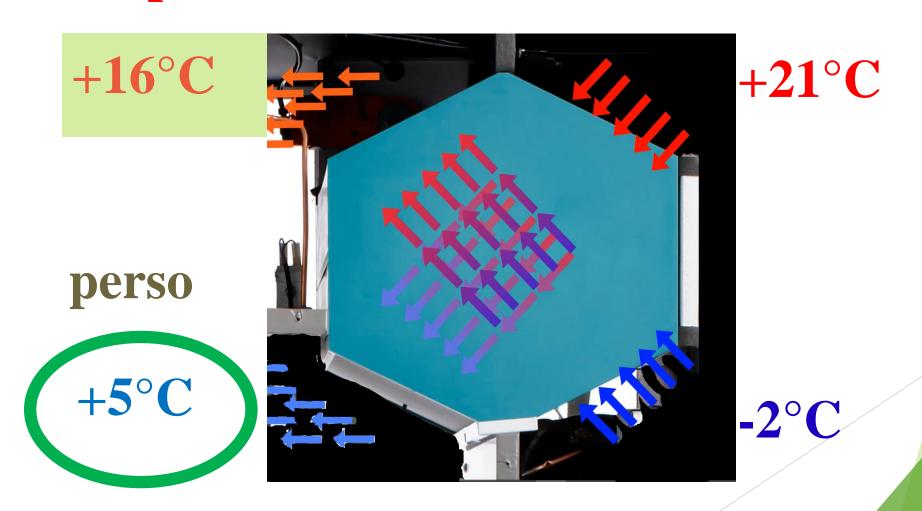
MA PERCHÈ LA VMC NON È STATA CONSIDERATA COME CATEGORIA DI IMPIANTO ??

SEMPLICE !! la performance di una VMC (SEC-SER norme EN) NON È ancora stata DEFINITA é RECEPITA da un decreto, quindi ad oggi formalmente non si sa quale VMC è buona e quale no


Il comfort non può prescindere dalla Ventilazione Meccanica Controllata e Centralizzata

La ventilazione meccanica controllata (VMC) è una tecnologia messa a punto specificatamente per poter garantire il miglior comfort abitativo negli edifici ad elevata prestazione energetica o nelle riqualificazioni.

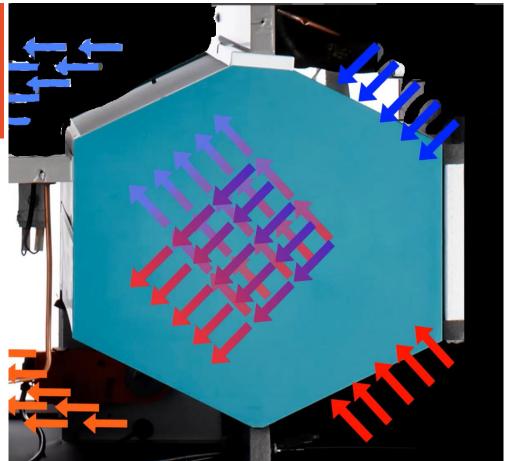
Per la qualità abitativa



Per la sostenibilità energetica

Come funziona una VMC con recupero passivo?

VMC con recupero passivo in inverno NON RISCALDA..anzi..


recupera circa l' 80% del calore

VMC con recupero passivo in estate NON RAFFRESCA..anzi..

Recupera solo il 20% e RISCALDA LA CASA!!

+30°C

+26°C

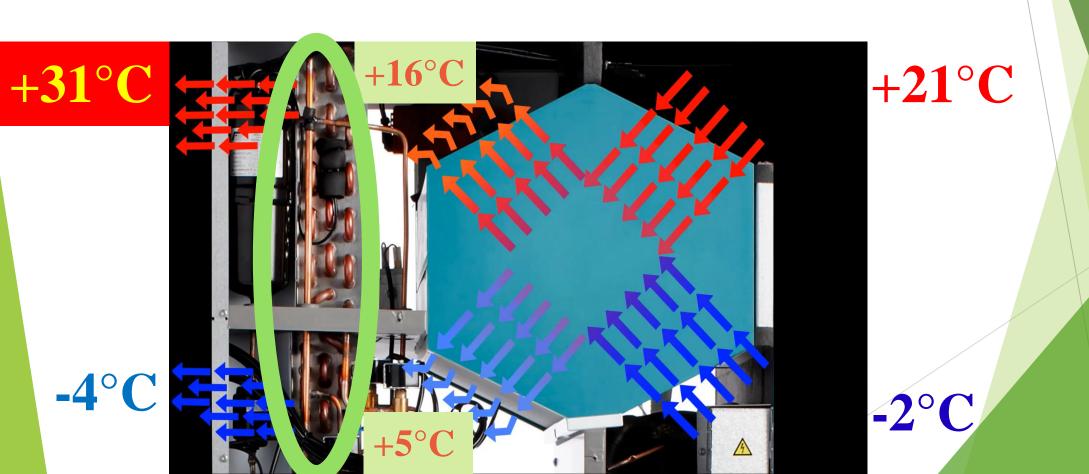
+30°C

+35°..39°C

Anche se la VMC non contribuisce al riscaldamento e raffrescamento è NECESSARIA per la salubrità dell'aria!

Cosa respiriamo in casa senza VMC

Che differenza c'è tra


VMC recupero passivo

e

VMC TERMODINAMICA?

VMC TERMODINAMICA recupero passivo+ATTIVO in PDC

recupera il 130% in INVERNO e RISCALDA

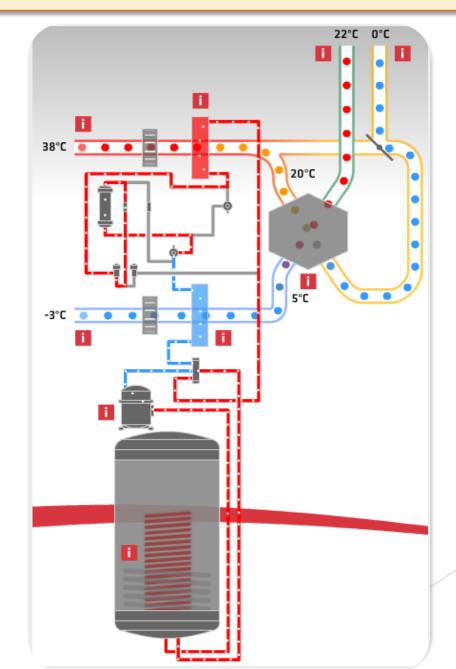
VMC TERMODINAMICA recupero passivo+ATTIVO in PDC

Recupera circa il 150% in ESTATE RAFFRESCA E DEUMIDIFICA LA CASA

+26°C +18°C +45°C

Le VMC TERMODINAMICHE con PDC aria/aria a RINNOVO TOTALE sono considerate a tutti gli effetti pompe di calore e sono ammesse come spese detraibili negli **ECOBONUS** SOLO se hanno i test COP **CERTIFICATI** Queste unità se producono anche acqua calda si chiamano **AGGREGATI COMPATTI**

VMC TERMODINAMICHE

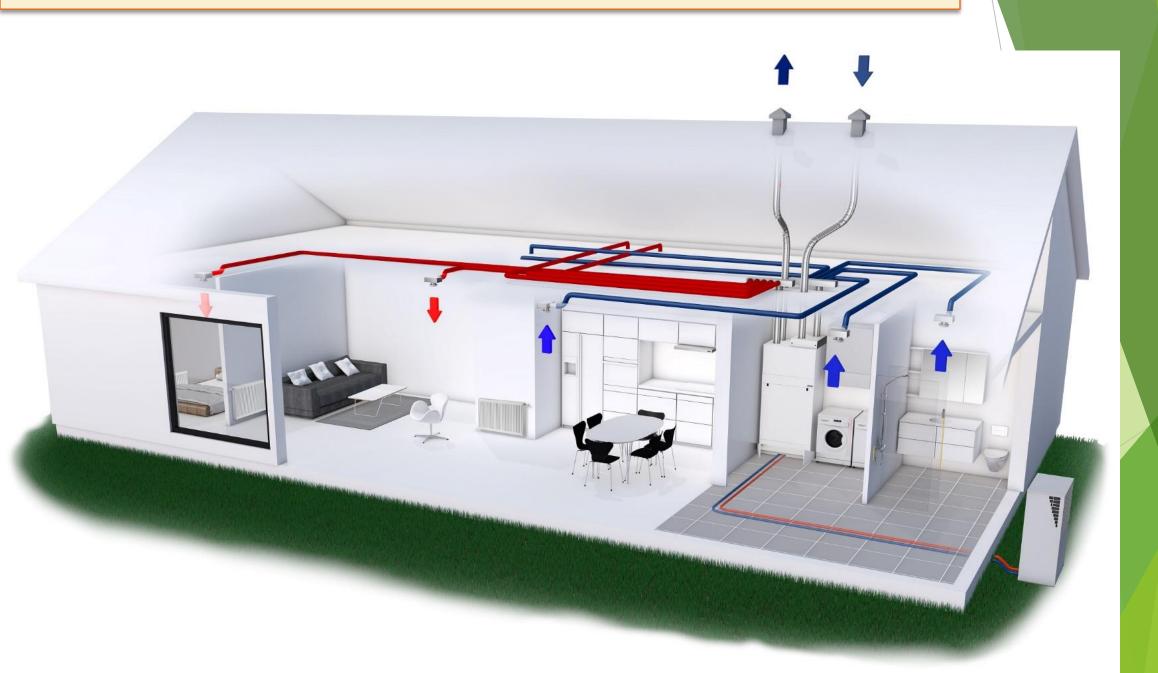


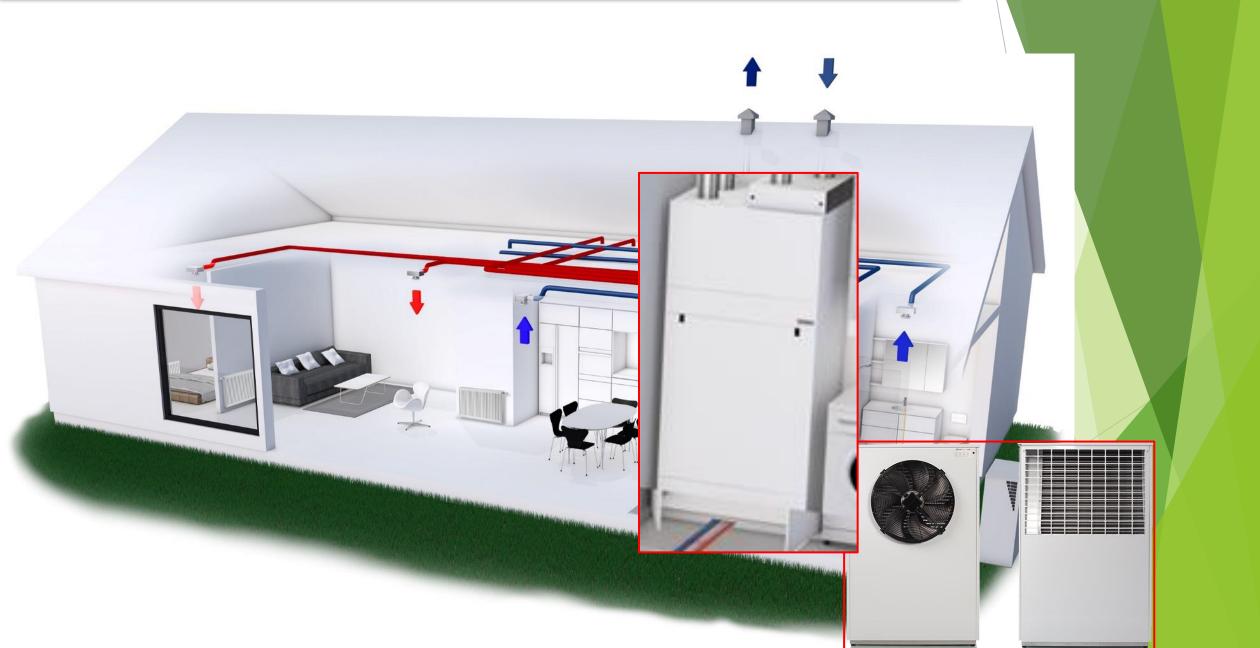
AGGREGATI COMPATTI

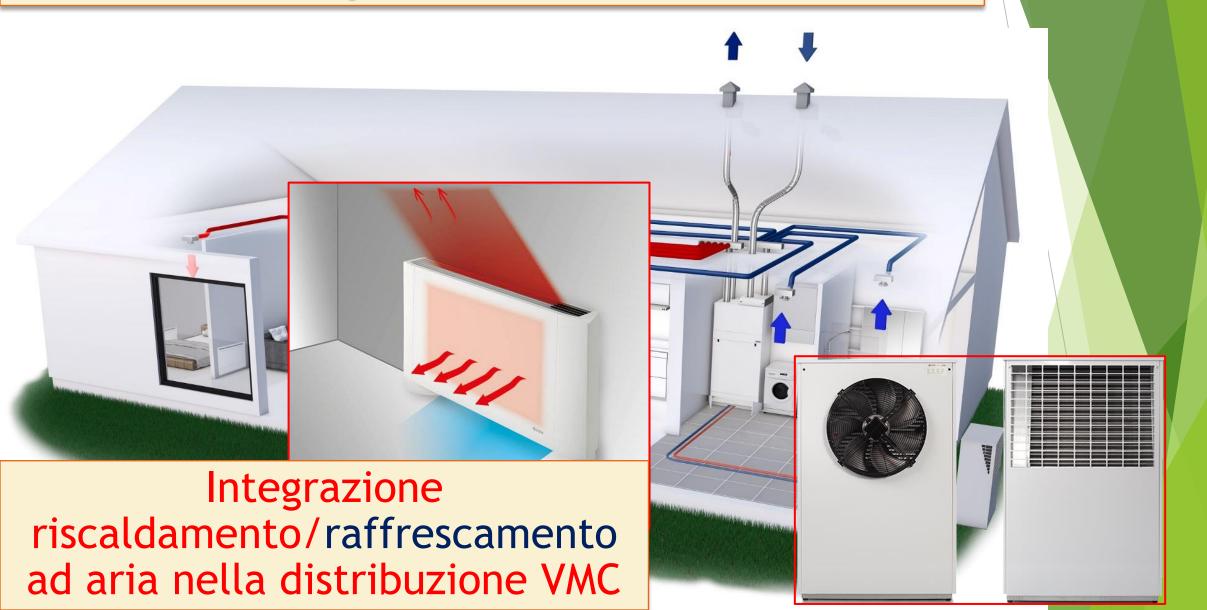
AGGREGATI COMPATTI: funzioni

VMC Riscaldamento aria Raffrescamento aria Deumidificazione Acqua calda

Soluzioni ARIA + IDRONICHE di climatizzazione in pompa di calore con rinnovo aria a recupero di calore


CASO 1 Impianto esistente con caldaia Potenza dispersione TR ≈ 50-60W/mq termosifoni a 55°C


Sostituzione con Aggregato Compatto + PDC aria/acqua e termosifoni a 40°C


Raffrescamento estivo nella distribuzione VMC


Acqua calda sanitaria in PDC

Sostituzione con Aggregato Compatto + PDC aria/acqua e ventilradiatori a 40°C

Raffrescamento estivo con ventilradiatore e nella distribuzione VMC

CASO 2 Impianto esistente con caldaia Potenza di dispersione TR ≈ 45-50W/mq riscaldamento a pavimento

Sostituzione con Aggregato Compatto + PDC aria/acqua

Raffrescamento radiante e deumidificatori e nella distribuzione VMC

Raffrescamento radiante e con *idrosplit* canalizzato nella distribuzione VMC

34 modi diversi, tutti italiani, di prendere un caffè al bar

e gli impianti???

Progettare il comfort indoor è la priorità!

image source: Albert, Righter and Tittmann Architects

Grazie per l'attenzione e la pazienza

Grazie per l'attenzione

Ing. Ivo Cerboni

info@exrg.it