La classificazione energetica degli edifici nel contesto normativo del Superbonus

Ing. Carmine Battipaglia - Presidente Comitato Elettrotecnico Italiano C.T. 64

UNI EN 15232 SULLA PRESTAZIONE ENERGETICA DEGLI EDIFICI

La norma UNI 15232 ha a che fare in maniera netta con l'efficienza energetica negli edifici. Un tema che ha un'importanza fondamentale nell'ottica della sostenibilità, dal momento che buona parte delle emissioni di CO2 e dei consumi energetici è legata proprio a questi ambienti.

In particolare, questa norma è molto importante in ambito Building Automation: i sistemi di automazione e controllo degli edifici sono infatti in grado di massimizzare l'efficienza energetica degli impianti tecnici dell'edificio in relazione alle condizioni ambientali esterne e ai differenti profili di utilizzo e occupazione dei singoli ambienti.

UNI EN 15232 SULLA PRESTAZIONE ENERGETICA DEGLI EDIFICI

La norma europea UNI 15232 è stata introdotta per la prima volta nel 2012 (elaborata dal Comitato tecnico CEN/TC 247) e successivamente modificata e integrata nel 2017.

Costituisce uno degli standard normativi per applicare la Direttiva EPBD sul contenimento energetico degli edifici.

La UNI EN 15232 "Prestazione energetica degli edifici— Incidenza dell'automazione, della regolazione e della gestione tecnica degli edifici" definisce i metodi per la valutazione del risparmio energetico raggiungibile negli edifici attraverso la Building Automation e sistemi di monitoraggio e controllo. L'aspetto cruciale della norma è infatti quello di specificare una lista estremamente strutturata delle funzioni di controllo (ad esempio, controllo del riscaldamento) automazione e gestione tecnica degli edifici che contribuiscono alla prestazione energetica degli stessi.

La UNI EN 15232 contiene definizioni estremamente importanti in ambito Building Automation, quali:

<u>BAC (Building Automation and Control):</u> si tratta di ogni prodotto, software o sistema in grado di automatizzare, controllare, monitorare ed ottimizzare una o più porzioni/attività di impianto, favorendone il risparmio energetico, la manutenzione e la sicurezza;

BACS (BAC System): in questo caso il riferimento è al funzionamento coordinato dei diversi BAC, attraverso l'interconnessione con tutti gli impianti dell'edificio, favorendone il risparmio energetico, la manutenzione e la sicurezza dell'intero sistema edificio-impianti;

TMB (Technical Building Management) e TBS (Technical Building System):

trattasi di un BACS di tipo evoluto, comprensivo di data collection, reportistica, contabilizzazione dei consumi, attività operative e gestionali anche infrastrutturali, ecc., a supporto delle attività di building management.

<u>BEMS (Building Energy Management System):</u> il sistema o la piattaforma per gestire l'edificio, monitoraggio in tempo reale, dei consumi di energia e il rendimento del Sistema edificio-impianto lungo tutto il suo ciclo di vita.

A High performance

Come la Classe B ma con livelli di precisione e completez controllo automatico tali da garantire elevati prestazioni energetiche all'impianto

B Avanzato

Impianti controllati con sistemi di automazione ti (HBES/BACS) dotati anche di una gestione centra e coordinata delle funzioni e dei singoli impianti

C Standard

Impianti automatizzati con apparec controllo tradizionali o sistemi bus (HBES/BACS). Requisito minimo EPI

D Non energicamente efficiente

Comprende gli impianti tecnici tradizionali e priv automazione Sulla base di queste definizioni, la UNI EN 15232 individua quattro diverse classi di sistemi di Building Automation in base alle funzioni di automazione implementate negli edifici:

Classe D "NON ENERGY EFFICIENT" (NON ENERGETICAMENTE EFFICIENTE): comprende gli impianti tecnici tradizionali e privi di automazione, non efficienti dal punto di vista energetico

Classe C "STANDARD" (RIFERIMENTO): corrisponde agli impianti automatizzati con apparecchi di controllo tradizionali o con sistemi BUS (BACS/HBES). E'considerata la classe di riferimento perché corrisponde ai requisiti minimi richiesti dalla direttiva EPBD. Infatti questa Classe, rispetto alla Classe D, consente di ottenere un notevole incremento dell'efficienza energetica utilizzando un sistema di automazione tradizionale o un sistema bus ad un livello prestazionale e funzionale minimo rispetto alle sue reali potenzialità.

Classe B "ADVANCED" (AVANZATO): comprende gli impianti controllati con un sistema di automazione BUS (BACS/HBES) ma dotati anche di una gestione centralizzata e coordinata delle funzioni e dei singoli impianti (TBM).

Classe A "HIGH ENERGY PERFORMANCE" (ALTA PRESTAZIONE ENERGETICA): come la Classe B ma con livelli di precisione e completezza del controllo automatico tali da garantire elevate prestazioni energetiche dell'impianto.

BACS e TBM con elevate prestazioni

BACS e TBM avanzati

BACS standard

C

BACS non efficienti

D

IL QUADRO NORMATIVO - REGOLATORIO

IL SUPERBONUS: AGGIORNAMENTO E DATI PRINCIPALI

- La prima sezione ha l'obiettivo di fornire un quadro completo in merito alle principali norme/direttive che influenzano lo sviluppo delle architetture digitali negli edifici in Italia, di valutarne il grado di applicazione e di mettere in evidenza le azioni da implementare per garantirne il rispetto.
- Nella seconda sezione, l'obiettivo è di fornire un **aggiornamento in merito alle "linee guide" definite con il Superbonus 110%** e di dare una rappresentazione dei primi numeri dopo oltre un anno dalla sua introduzione.

I PRINCIPALI PROVVEDIMENTI LEGISLATIVI

Con riferimento al concetto di *Smart Building* e alla necessità di dotare l'edificio di un'infrastruttura adeguata alla raccolta e gestione dei dati, si riportano di seguito le **principali leggi, decreti e direttive emanate negli ultimi anni a livello Italiano ed Europeo.**

D.P.R. 6 GIUGNO 2001, N. 380

Testo unico delle disposizioni legislative e regolamentari in materia di edilizia.

DECRETO LEGISLATIVO 1 AGOSTO 2003, N. 259

Codice delle comunicazioni elettroniche.

LEGGE 11 NOVEMBRE 2014, N. 164

Conversione in legge, con modificazioni, del Decreto-Legge 12 settembre 2014, n. 133*

DECRETO LEGISLATIVO 15 FEBBRAIO 2016, N.33

Attuazione della direttiva 2014/61/UE del Parlamento Europeo e del Consiglio del 15 maggio 2014

LEGGE 1 AGOSTO 2002, N. 166

Disposizioni in materia di infrastrutture e trasporti.

DIRETTIVA PARLAMENTO EUROPEO E DEL CONSIGLIO 15 MAGGIO 2014, N. 61

Misure volte a ridurre i costi dell'installazione di reti di comunicazione elettronica ad alta velocità.

DECRETO MINISTERIALE 26 GIUGNO 2015

Applicazione e definizione delle prescrizioni e dei requisiti minimi degli edifici

Italia E

QUADRO NORMATIVO

I PRIMI DECRETI

All'inizio degli anni 2000, sono stati emanati decreti e leggi volti alla definizione delle linee guida per la realizzazione degli edifici. In questa sede, iniziano a diventare rilevanti alcuni aspetti legati al mondo delle telecomunicazioni e dell'elettronica.

D.P.R. 6 GIUGNO 2001, N. 380

Definisce i principi fondamentali e le disposizioni generali per la disciplina dell'attività edilizia. In particolare, si evidenziano:

- le disposizioni per favorire l'eliminazione delle barriere architettoniche;
- i provvedimenti per la costruzione in zone sismiche;
- le norme per la sicurezza degli impianti e il risparmio energetico.

Il documento originario ha subito nel corso degli anni **modifiche e integrazioni** (l'ultima nel 2020 con il Decreto Semplificazioni), ma rimane tutt'ora in vigore.

LEGGE 1 AGOSTO 2002, N. 166

All'articolo 40 «Installazione di cavidotti per reti di telecomunicazioni», comma 1, la legge introduce il tema della predisposizione degli edifici alla ricezione dei segnali provenienti dalle reti di telecomunicazione e di altre infrastrutture digitali: «Nelle nuove costruzioni civili a sviluppo verticale devono essere parimenti previsti cavedi multiservizi o, comunque, cavidotti di adeguate dimensioni per rendere agevoli i collegamenti delle singole unità immobiliari».

D.L. 1 AGOSTO 2003, N. 259

Definisce i **principi fondamentali** e le disposizioni generali **della comunicazione elettronica**; in particolare si fa riferimento a:

- reti e servizi di comunicazione elettronica ad uso pubblico e privato;
- servizi universali e diritti degli utenti in materia di reti e di servizi di comunicazione elettronica.

Inoltre, all'articolo 4, comma 1, definisce in modo esplicito come siano da tutelare "i diritti inderogabili di libertà delle persone nell'uso dei mezzi di comunicazione elettronica".

I PRINCIPALI PROVVEDIMENTI LEGISLATIVI

Con riferimento al concetto di *Smart Building* e alla necessità di dotare l'edificio di un'infrastruttura adeguata alla raccolta e gestione dei dati, si riportano di seguito le **principali leggi, decreti e direttive emanate negli ultimi anni a livello Italiano ed Europeo.**

(*) Il Decreto Legge 12 Settembre 2014, n. 133 introduce "Misure urgenti per l'apertura dei cantieri, la realizzazione delle opere pubbliche, la digitalizzazione del Paese, la semplificazione burocratica, l'emergenza del dissesto idrogeologico e per la ripresa delle attività produttive".

LA DIRETTIVA DEL PARLAMENTO EUROPEO E DEL CONSIGLIO DEL 15 MAGGIO 2014, N. 61

A valle dell'adesione degli Stati Membri all' «Agenda digitale per l'Europa — Le tecnologie digitali come motore della crescita europea» e considerata la rapida evoluzione e sviluppo delle tecnologie abilitanti, la crescita esponenziale del traffico a banda larga e la domanda crescente di servizi elettronici, la Commissione Europea ha pubblicato la Direttiva 15 maggio 2014, n.61 con la quale mira a delineare le «misure volte a ridurre i costi dell'installazione di reti di comunicazione elettronica ad alta velocità».

L'Agenda digitale europea ha introdotto due obiettivi principali al 2020:

- possibilità di accesso ad una rete dati con una velocità pari o superiore ai 30 Mbit/s per il 100% della popolazione residente nell'Unione Europea;
- Possibilità di accesso ad una rete dati con una velocità superiore ai 100 Mbit/s per il 50% della popolazione residente nell'Unione Europea.

Lo scopo della Direttiva del Parlamento Europeo e del Consiglio è quello di **«facilitare e incentivare l'instal**lazione di reti di comunicazione elettronica ad alta velocità promuovendo l'uso condiviso dell'infrastruttura fisica esistente e consentendo un dispiegamento più efficiente di infrastrutture fisiche nuove in modo da abbattere i costi dell'installazione di tali reti».

La Direttiva è entrata in vigore 21 giorni dopo la pubblicazione nella Gazzetta Ufficiale dell'Unione Europea e gli **Stati Membri hanno dovuto recepire tale direttiva entro il 1 gennaio 2016** e applicare le disposizioni a partire dal 1 luglio 2016.

La riduzione dei costi da sostenere per la digitalizzazione degli edifici non può prescindere dallo sviluppo di sinergie tra i vari settori coinvolti nelle attività di installazione delle reti di comunicazione elettronica ad alta velocità: operatori di rete, fornitori di reti di comunicazione, imprese di pubblici servizi, costruttori di opere di genio civile, proprietari degli immobili, eccetera.

A tal proposito, con la Direttiva sono stati introdotti alcuni elementi importanti per garantire una adeguata cooperazione tra gli operatori anche di settori diversi:

NEUTRALITÀ TECNOLOGICA

 Principio secondo cui le infrastrutture fisiche* della rete di comunicazione elettronica possono ospitare contemporaneamente una serie di elementi, compresi quelli in grado di garantire servizi di accesso alla banda larga alla velocità di almeno 30 Mbit/s.

SPORTELLO ELETTRONICO UNICO

 Gli enti pubblici che per competenza detengono informazioni minime relative alle infrastrutture fisiche di un operatore di rete devono renderle disponibili, entro il 1 gennaio 2017, su uno sportello elettronico unico, accessibile dalle imprese che forniscono reti pubbliche di comunicazione.

 Tali imprese dovranno garantire il rispetto della riservatezza e dei segreti tecnici e commerciali.

ORGANISMO PER LA RISOLUZIONE DI CONTROVERSIE

- È designato da ciascuno Stato membro ed è giuridicamente distinto e funzionalmente autonomo dagli operatori di rete; tutte le parti coinvolte nelle attività devono cooperare con esso.
- Entra in azione nella risoluzione delle controversie tra operatori in merito a: accesso alle infrastrutture fisiche e alle relative informazioni; coordinamento opere civili; eccetera.

Nota: Infrastruttura fisica – «Tutti gli elementi di una rete destinati ad ospitare altri elementi di una rete senza che diventino essi stessi un elemento attivo della rete, ad esempio tubature, piloni, cavidotti, pozzi di ispezione, pozzetti, centraline, edifici o accessi a edifici, installazioni di antenne, tralicci e pali».

Fonte: Direttiva del Parlamento Europeo e del Consiglio del 15 maggio 2014,n. 61.

QUADRO NORMATIVO

LA DIRETTIVA DEL PARLAMENTO EUROPEO E DEL CONSIGLIO DEL 15 MAGGIO 2014, N. 61

Considerando che «la posa di mini-condotti durante la costruzione di un edificio ha solo un costo marginale limitato, mentre gli adattamenti a posteriori degli edifici per accogliere l'infrastruttura ad alta velocità possono costituire una parte significativa del costo dell'installazione della rete ad alta velocità», la direttiva europea definisce che «è opportuno che tutti gli edifici nuovi o sottoposti a una profonda ristrutturazione siano equipaggiati di un'infrastruttura fisica che permetta la connessione degli utenti finali alle reti ad alta velocità».

A tal fine, la Direttiva del Parlamento Europeo e del Consiglio ha introdotto le seguenti disposizioni:

Tutti gli edifici nuovi, per i quali le domande di autorizzazione edilizia sono presentate dopo il 31 dicembre 2016, dovranno essere equipaggiati, nella sede dell'utente finale, di un'infrastruttura fisica interna all'edificio predisposta per l'alta velocità fino ai punti terminali di rete.

In modo analogo, la disposizione di cui al punto precedente **si applica anche per tutti gli edifici esistenti sottoposti a profonda ristrutturazione** per i quali le domande di autorizzazione edilizia saranno presentate dopo il 31 dicembre 2016.

Gli edifici nuovi o profondamente ristrutturati, dotati di un'infrastruttura fisica interna all'edificio predisposta per l'alta velocità, potranno ricevere l'etichetta di **«predisposizione alla banda larga»** negli Stati membri che hanno scelto di introdurre questo strumento su base volontaria.

Esso potrà caratterizzare e valorizzare l'edificio sul mercato ed aiutare potenziali acquirenti e/o locatari all'identificazione degli edifici dotati dell'infrastruttura fisica interna predisposta per l'alta velocità.

Con riferimento al concetto di Smart Building e alla necessità di dotare l'edificio di un'infrastruttura adeguata alla raccolta e gestione dei dati, si riportano di seguito le principali leggi, decreti e direttive emanate negli ultimi anni a livello Italiano ed Europeo.

D.P.R. 6 GIUGNO 2001, N. 380

Testo unico delle disposizioni legislative e regolamentari in materia di edilizia.

DECRETO LEGISLATIVO 1 AGOSTO 2003, N. 259

Codice delle comunicazioni elettroniche.

LEGGE 11 NOVEMBRE 2014, N. 164

Conversione in legge, con modificazioni, del Decreto-Legge 12 settembre 2014, n. 133*

DECRETO LEGISLATIVO 15 FEBBRAIO 2016, N.33

Attuazione della direttiva 2014/61/UE del Parlamento Europeo e del Consiglio del 15 maggio 2014

LEGGE 1 AGOSTO 2002, N. 166

Disposizioni in materia di infrastrutture e trasporti.

DIRETTIVA PARLAMENTO EUROPEO E DEL CONSIGLIO 15 MAGGIO 2014, N. 61

Misure volte a ridurre i costi dell'installazione di reti di comunicazione elettronica ad alta velocità.

Europa

DECRETO MINISTERIALE 26 GIUGNO 2015

Applicazione e definizione delle prescrizioni e dei requisiti minimi degli edifici

La Legge 11 novembre 2014, n.164 converte, con modificazioni, il Decreto-Legge 12 settembre 2014, n. 133, recante alcune «misure urgenti per l'apertura dei cantieri, la realizzazione delle opere pubbliche, la **digitalizzazione del Paese**, la semplificazione burocratica, l'emergenza del dissesto idrogeologico e per la ripresa delle attività produttive».

Articolo 6 – Agevolazioni per la realizzazione di reti di comunicazione elettronica a banda ultralarga e norme di semplificazione per le procedure di scavo e di posa aerea dei cavi, nonché per la realizzazione delle reti di comunicazioni elettroniche

TEMPISTICHE

Introdotto in via provvisoria dal 01.01.2015 fino al 31.12.2015

<u>DEFINIZIONI</u>

Rete a banda ultralarga a 30 Mbit/s: insieme delle infrastrutture e delle tecnologie in grado di erogare un servizio di connettività con banda di *download* di almeno 30 Mbit/s e di *upload* di almeno 3 Mbit/s su una determinata area

Rete a banda ultralarga a 100 Mbit/s: insieme delle infrastrutture e tecnologie in grado di erogare un servizio di connettività con banda di *download* di almeno 100 Mbit/s e di *upload* di almeno 10 Mbit/s su una determinata area

Servizio a banda ultralarga: uno dei servizi di connettività con la banda di cui ai punti precedenti e con l'obbligo di copertura di tutti i potenziali utenti (residenziali, pubbliche amministrazioni, imprese) di una determinata area geografica con un fattore di contemporaneità di almeno il 50% della popolazione residente servita e assicurando la copertura di tutti gli edifici scolastici dell'area interessata.

AGEVOLAZIONE

Credito di imposta su IRES e IRAP complessivamente dovute all'impresa che realizza l'intervento fino ad un massimo del 50% del costo sostenuto per l'investimento infrastrutturale stesso.

INTERVENTI AGEVOLABILI

Interventi infrastrutturali realizzati sulla rete a banda ultralarga e per i quali non sono previsti contributi pubblici a fondo perduto; tali interventi devono essere relativi alla rete di accesso attraverso cui viene fornito il servizio a banda ultralarga all'utente e devono rispettare le seguenti caratteristiche:

- essere **nuovi e aggiuntivi**, non già previsti in piani industriali o finanziari e funzionali ad assicurare il servizio a banda ultralarga a tutti i soggetti potenzialmente interessati insistenti nell'area considerata;
- soddisfare un obiettivo di pubblico interesse previsto dall'Agenda digitale europea;
- prevedere un investimento privato finalizzato all'estensione della rete a banda ultralarga non inferiore a determinate soglie*;
- le **condizioni del mercato** devono essere **insufficienti** a garantire che l'investimento privato sia realizzato entro due anni dalla data di entrata in vigore della presente disposizione. Il termine è di tre anni in caso di investimenti superiori a 50 mln €.

VINCOLI

Non possono godere dell'agevolazione tutti quegli interventi infrastrutturali realizzati in zone dove già sussistano idonee infrastrutture o vi sia già un fornitore di servizi a banda ultralarga con caratteristiche uguali o superiori a quelle dell'intervento per il quale è richiesto il contributo.

ADEMPIMENTI BUROCRATICI

Entro il 31.01.2015 l'operatore interessato deve **presentare un'evidenza pubblica** sul sito del Ministero dello sviluppo economico per indicare le aree nelle quali intende intervenire (prenotazione)*.

Nei tre mesi successivi la prenotazione, l'operatore deve **inviare il progetto esecutivo firmato digitalmente** e conforme a quanto presentato in sede di prenotazione.

A valle della realizzazione dell'intervento, l'operatore è chiamato ad inoltrare al Ministero dello sviluppo economico **il certificato di collaudo** tramite il quale si potrà verificare l'aderenza del lavoro svolto alle linee guida progettuali concordate.

QUADRO NORMATIVO |

LA LEGGE 11 NOVEMBRE 2014, N. 164

La Legge 11 novembre 2014, n.164 converte, con modificazioni, il Decreto-Legge 12 settembre 2014, n. 133, recante alcune «misure urgenti per l'apertura dei cantieri, la realizzazione delle opere pubbliche, la **digitalizzazione del Paese**, la semplificazione burocratica, l'emergenza del dissesto idrogeologico e per la ripresa delle attività produttive».

Articolo 6bis – Istituzione del Sistema informativo nazionale federato delle infrastrutture

OBIETTIVO

Definizione di una soluzione digitale utile ad identificare le infrastrutture di banda larga e ultralarga presenti nel territorio nazionale al fine di poter definire delle soluzioni in grado di aumentare il contenuto digitale associato alla banda larga e ultralarga.

MISURA

Il Ministero dello sviluppo economico definisce le regole tecniche per la definizione del contenuto del Sistema informativo nazionale federato delle infrastrutture, le modalità di prima costituzione, di raccolta, di inserimento e di consultazione dei dati, nonché le regole per il successivo aggiornamento, lo scambio e la pubblicità dei dati territoriali detenuti dalle singole amministrazioni competenti e dagli altri soggetti titolari o gestori di infrastrutture di banda larga e ultralarga. I dati ricavati devono essere messi a disposizione in un formato aperto e interoperabile senza compromettere il carattere riservato dei dati sensibili.

TEMPISTICHE

Entro 90 giorni dalla pubblicazione della Legge n. 164 dell'11 novembre 2014, il MiSE definisce le modalità con cui costituire il Sistema Informativo nazionale federato delle infrastrutture;

Tutte le informazioni relative alle infrastrutture a banda larga e ultralarga disponibili a livello nazionale, regionale e locale devono confluire nel Sistema entro i 120 giorni successivi la sua costituzione.

QUADRO NORMATIVO |

LA LEGGE 11 NOVEMBRE 2014, N. 164

La Legge 11 novembre 2014, n.164 converte, con modificazioni, il Decreto-Legge 12 settembre 2014, n. 133, recante alcune «misure urgenti per l'apertura dei cantieri, la realizzazione delle opere pubbliche, la **digitalizzazione del Paese**, la semplificazione burocratica, l'emergenza del dissesto idrogeologico e per la ripresa delle attività produttive».

Articolo 6ter – Introduzione dell'articolo 135bis: Norme per l'infrastrutturazione digitale degli edifici*

OBIETTIVO

Promuovere l'infrastrutturazione digitale degli edifici introducendo **l'obbligo di dotazione di un'infrastruttura passiva interna all'edificio** in grado di abilitare l'accesso ai servizi a banda ultralarga e relativi punti di accesso alle seguenti tipologie di edificio:

- tutti gli **edifici di nuova costruzione** per i quali le domande di autorizzazione edilizia siano state presentate dopo il 1º luglio 2015;
- tutti gli **interventi edilizi che richiedano il rilascio di un permesso di costruire** ai sensi dell'art. 10, comma 1, lettera c) del Testo Unico delle disposizioni legislative e regolamentari in materia edilizia, ovvero:
 - tutti gli interventi di ristrutturazione edilizia che portino ad un organismo edilizio in tutto o in parte diverso dal precedente;
 - gli interventi su immobili compresi nelle zone omogenee A che comportino mutamenti della destinazione d'uso.

DISPOSIZIONI

Comma 1 – «Tutti gli edifici di nuova costruzione per i quali le domande di autorizzazione edilizia sono presentate dopo il 1º luglio 2015 devono essere equipaggiati con un'infrastruttura fisica multiservizio passiva interna all'edificio, costituita da adeguati spazi installativi e da impianti di comunicazione ad alta velocità in fibra ottica fino ai punti terminali di rete. Lo stesso obbligo si applica, a decorrere dal 1º luglio 2015, in caso di opere che richiedano il rilascio di un permesso di costruire ai sensi dell'articolo 10, comma 1, lettera c)».

Comma 2 – «Tutti gli edifici di nuova costruzione per i quali le domande di autorizzazione edilizia sono presentate dopo il 1° luglio 2015 devono essere equipaggiati di un punto di accesso. Lo stesso obbligo si applica, a decorrere dal 1° luglio 2015, in caso di opere di ristrutturazione profonda che richiedano il rilascio di un permesso di costruire ai sensi dell'articolo 10».

Comma 3 – «Gli edifici equipaggiati in conformità al presente articolo possono beneficiare, ai fini della cessione, dell'affitto o della vendita dell'immobile, dell'etichetta volontaria e non vincolante di 'edificio predisposto alla banda larga'. Tale etichetta è rilasciata da un tecnico abilitato per gli impianti di cui all'articolo 1, comma 2, lettera b), del regolamento di cui al decreto del Ministro dello sviluppo economico 22 gennaio 2008, n. 37, e secondo quanto previsto dalle Guide CEI 306-2 e 64-100/1, 2 e 3».

QUADRO NORMATIVO |

LA LEGGE 11 NOVEMBRE 2014, N. 164

La Legge 11 novembre 2014, n.164 converte, con modificazioni, il Decreto-Legge 12 settembre 2014, n. 133, recante alcune «misure urgenti per l'apertura dei cantieri, la realizzazione delle opere pubbliche, la **digitalizzazione del Paese**, la semplificazione burocratica, l'emergenza del dissesto idrogeologico e per la ripresa delle attività produttive».

Articolo 6ter – Introduzione dell'articolo 135bis: Norme per l'infrastrutturazione digitale degli edifici*

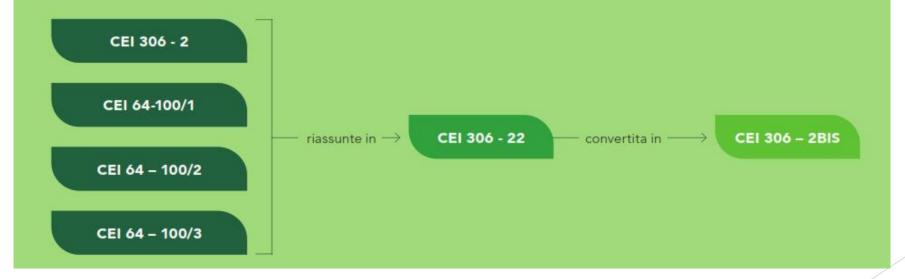
DEFINIZIONI

Infrastruttura fisica multiservizio interna all'edificio: complesso delle installazioni presenti all'interno degli edifici contenenti reti di accesso cablate in fibra ottica con terminazione fissa o senza fili che permettono di fornire l'accesso ai servizi a banda ultralarga e di connettere il punto di accesso dell'edificio con il punto terminale di rete;

Punto di accesso: punto fisico, situato all'interno o all'esterno dell'edificio e accessibile alle imprese autorizzate a fornire reti pubbliche di comunicazione, che consente la connessione con l'infrastruttura interna all'edificio predisposta per i servizi di accesso in fibra ottica a banda ultralarga.

Etichetta volontaria di *«edificio predisposto alla banda ultralarga»*: certificazione rilasciata da un tecnico abilitato ai sensi del DM 37/2008 art. 1, comma 2, lettera b) per garantire la realizzazione di un impianto a regola d'arte secondo le normative vigenti volte alla minimizzazione dei costi di realizzazione e al rispetto dei diritti di libertà individuale nell'uso dei mezzi di comunicazione elettronica.

BOX 1: GUIDA TECNICA CEI 306-2 |


GUIDA AL CABLAGGIO PER LE COMUNICAZIONI ELETTRONICHE NEGLI EDIFICI RESIDENZIALI

Le guide tecniche CEI citate all'interno del comma 3 dell'articolo 135bis del D.P.R. 6 giugno 2001, sono:

- guida tecnica CEI 306-2 relativa al cablaggio per comunicazioni elettroniche negli edifici residenziali;
- guide tecniche CEI 64-100/1,2,3 relative alla predisposizione delle infrastrutture per gli impianti elettrici, elettronici e per le comunicazioni.

Il Comitato Elettrotecnico Italiano, a seguito dell'approvazione della Legge 11 novembre 2014, n.164, ha sintetizzato e integrato i contenuti delle quattro guide in un'unica nuova guida, la CEI 306-22.

Recentemente (nel 2019), tale guida è stata ulteriormente rivista e rinominata, andando a definire la **CEI 306-2bis** (Guida al cablaggio per le comunicazioni elettroniche negli edifici residenziali) che identifica le **linee guida per la progettazione di un impianto fisico** multiservizio all'interno di un edificio residenziale.

BOX 1: GUIDA TECNICA CEI 306-2 |

GUIDA AL CABLAGGIO PER LE COMUNICAZIONI ELETTRONICHE NEGLI EDIFICI RESIDENZIALI

La guida tecnica CEI 306-2bis permette, a chi progetta, costruisce e cabla edifici residenziali, di applicare nel modo più razionale e corretto possibile una molteplicità di norme sul tema del cablaggio per impianti di comunicazione nell'ambito degli edifici residenziali.

SCOPO

A CHI SI RIVOLGE

LINEE GUIDA PRINCIPALI Fornire le raccomandazioni per la progettazione, la realizzazione e la verifica di impianti di comunicazione elettroniche (dati, fonia, video) e la relativa infrastruttura fisica multiservizio passiva, a partire dal punto di consegna della fornitura in unità immobiliari ad uso residenziale in conformità alle norme tecniche applicabili, ed alle disposizioni legislative correnti.

Progettisti, installatori ed utilizzatori finali degli impianti di comunicazione affinché possano avere un supporto tecnico nelle scelte che si trovano ad operare.

Tra le numerose indicazioni riportate, si evidenziano alcuni aspetti principali:

- L'ottimizzazione del cablaggio a supporto delle diverse applicazioni (fonia, audio/video e trasmissione dati) e la loro integrazione dipendono dalla corretta predisposizione delle infrastrutture;
- sistema distributivo verticale per il cablaggio dell'edificio (reti di accesso cablate, broadcast e wireless) e dimensionamento/definizione dei locali tecnici (sotto-tetto, alla base dell'edificio, eccetera);
- importanza della tecnologia wireless per le estensioni della rete cablata mediante l'utilizzo di Access Point e soprattutto nei casi di edifici esistenti privi di infrastruttura passiva multiservizio dove gli spazi per l'implementazione del cablaggio sono limitati;
- collocazione del CSOE (Centro Servizi Ottico di Edificio), punto di attestazione delle fibre ottiche, del ROE (Ripartitore Ottico di Edificio), punto di terminazione delle reti degli operatori di comunicazione anche chiamato PTE (Punto Terminale di Edificio), e del QDSA (Quadro di Distribuzione dei Segnali di Appartamento), contenente gli apparecchi di distribuzione relativi agli impianti di comunicazione.

Con riferimento al concetto di *Smart Building* e alla necessità di dotare l'edificio di un'infrastruttura adeguata alla raccolta e gestione dei dati, si riportano di seguito le **principali leggi, decreti e direttive emanate negli ultimi anni a livello Italiano ed Europeo.**

D.P.R. 6 GIUGNO **DECRETO LEGISLATIVO LEGGE 11 NOVEMBRE DECRETO LEGISLATIVO** 2001, N. 380 1 AGOSTO 2003, N. 259 2014, N. 164 15 FEBBRAIO 2016, N.33 Attuazione della direttiva Testo unico delle disposizio-Conversione in legge, con mo-Codice delle comunicazioni 2014/61/UE del Parlamento dificazioni, del Decreto-Legge ni legislative e regolamentari Europeo e del Consiglio elettroniche. in materia di edilizia. 12 settembre 2014, n. 133* del 15 maggio 2014 **DECRETO MINISTERIALE LEGGE 1 AGOSTO DIRETTIVA PARLAMENTO EUROPEO E** 2002, N. 166 DEL CONSIGLIO 15 MAGGIO 2014, N. 61 26 GIUGNO 2015 Misure volte a ridurre i costi dell'installazione Applicazione e definizione Disposizioni in materia di di reti di comunicazione elettronica ad alta delle prescrizioni e dei requiinfrastrutture e trasporti. siti minimi degli edifici velocità.

Il decreto interministeriale 26 giugno 2015 del Ministero dello Sviluppo Economico di concerto con il Ministero dell'ambiente e della tutela del territorio e del mare, delle infrastrutture e dei trasporti, della salute e della difesa, rende obbligatorio il rispetto della classe B della classificazione UNI EN 15232 per edifici non residenziali, nuovi e soggetti a ristrutturazioni di primo livello (ovvero ristrutturazioni costituite da interventi che interessano più del 50% della superficie disperdente esterna e l'eventuale rifacimento dell'impianto termico invernale e/o estivo).

Decreto interministeriale 26 giugno 2015 – Decreto requisiti minimi

A CHI È RIVOLTO

Terziario privato, Pubblica Amministrazione

DEFINIZIONI

Il decreto ministeriale «Requisiti Minimi» ha prescritto il **livello minimo di automazione** corrispondente alla **classe B della norma UNI EN 15232**, introducendo così l'obbligarietà dei sistemi di automazione e controllo avanzati per gli edifici del settore terziario.

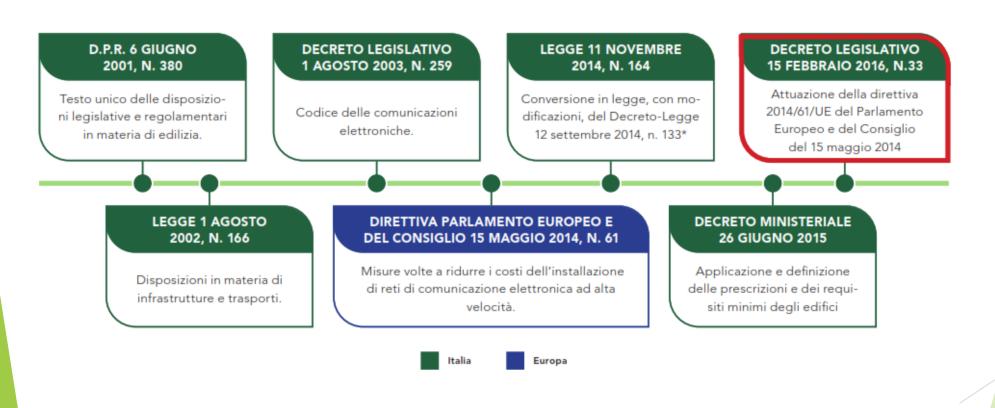
Le funzionalità impiantistiche valutate sono: gestione illuminazione, gestione riscaldamento/condizionamento, gestione ventilazione/raffrescamento, gestione schermature solari e gestione manutenzione ed energia.

Il decreto interministeriale 26 giugno 2015 del Ministero dello Sviluppo Economico di concerto con il Ministero dell'ambiente e della tutela del territorio e del mare, delle infrastrutture e dei trasporti, della salute e della difesa, rende obbligatorio il rispetto della classe B della classificazione UNI EN 15232 per edifici non residenziali, nuovi e soggetti a ristrutturazioni di primo livello (ovvero ristrutturazioni costituite da interventi che interessano più del 50% della superficie disperdente esterna e l'eventuale rifacimento dell'impianto termico invernale e/o estivo).

Di seguito si rappresenta il dettaglio delle classi definite dalla norma UNI EN 15232:

"
WHigh Energy Performance": come la Classe B ma con livelli di precisione e completezza del controllo automatico tali da realizzare una gestione dell'impianto molto puntuale, in modo da garantire elevate prestazioni energetiche dell'impianto.

«Advanced»: comprende gli impianti controllati con un sistema di automazione bus (Building Automation and Control Systems/ Home and Building Automation) e dotati anche di una gestione centralizzata e coordinata delle funzioni e dei singoli impianti.


«Standard»: corrisponde agli impianti automatizzati con apparecchi di controllo tradizionali o con sistemi BUS (Building Automation and Control Systems/Home and Building Automation). Corrisponde ai requisiti minimi richiesti dalla direttiva EPBD.

«Non Energy Efficient»: comprende gli impianti tecnici tradizionali e privi di automazione.

Con riferimento al concetto di *Smart Building* e alla necessità di dotare l'edificio di un'infrastruttura adeguata alla raccolta e gestione dei dati, si riportano di seguito le **principali leggi, decreti e direttive emanate negli ultimi anni a livello Italiano ed Europeo.**

(*) Il Decreto Legge 12 Settembre 2014, n. 133 introduce "Misure urgenti per l'apertura dei cantieri, la realizzazione delle opere pubbliche, la digitalizzazione del Paese, la semplificazione burocratica, l'emergenza del dissesto idrogeologico e per la ripresa delle attività produttive".

Con riferimento alla direttiva europea del 15 maggio 2014, n.61, il Governo italiano è ulteriormente intervenuto con il Decreto legislativo n. 33 del 15 febbraio 2016 all'interno del quale introduce:

Articolo 3 – Accesso all'infrastruttura fisica esistente

A CHI SI RIVOLGE

Gestori di infrastruttura fisica e operatori di rete.

DISPOSIZIONE

Ogni qual volta i gestori di infrastrutture fisiche e gli operatori di rete dovessero ricevere domanda di installazione di elementi di reti di comunicazione elettronica ad alta velocità da parte di operatori di rete, essi hanno l'obbligo di concederne l'accesso nel rispetto dei principi di trasparenza, non discriminazione, equità e ragionevolezza.

LIMITAZIONI

Il gestore dell'infrastruttura fisica e l'operatore di rete possono rifiutare di concedere l'accesso solo nei seguenti casi:

- · Infrastruttura oggettivamente inadeguata;
- Indisponibilità di spazio;
- · Inserimento di elementi che minacciano l'integrità e la sicurezza delle reti;
- Disponibilità di altri accessi più adeguati all'infrastruttura ad alta velocità.

Con riferimento alla direttiva europea del 15 maggio 2014, n.61, il Governo italiano è ulteriormente intervenuto con il Decreto legislativo n. 33 del 15 febbraio 2016 all'interno del quale introduce:

Articolo 8 – Infrastrutturazione fisica interna all'edificio ed accesso

A CHI SI RIVOLGE

Proprietari di unità immobiliari (o condominio) e operatori di rete

DISPOSIZIONE

I proprietari di unità immobiliari (o condominio) di edifici realizzati in conformità all'articolo 135bis del D.P.R. 6 giugno 2001 e dotati, quindi, di un'infrastruttura fisica passiva interna all'edificio hanno il diritto e l'obbligo di soddisfare tutte le richieste di accesso presentate da operatori di rete, secondo termini e condizioni eque e non discriminatorie, anche in riferimento al prezzo.

Gli operatori di rete hanno il diritto di **installare a spese proprie la loro rete fino al punto di accesso dell'abbonato**; inoltre, laddove la duplicazione fosse tecnicamente impossibile o inefficiente, gli operatori di rete hanno la possibilità di accedere all'infrastruttura passiva di rete per installare la propia rete di comunicazione ad alta velocità.

Laddove non dovesse essere presente l'infrastruttura fisica interna all'edificio, l'operatore di rete ha la facoltà di far terminare la propria rete nella sede dell'abbonato a condizione di non arrecare danno a terzi.

Articolo 9 – Organismo di risoluzione delle controversie

A CHI SI RIVOLGE

Agenzia per le garanzie nelle comunicazioni (AGCOM), proprietari di unità immobiliari e operatori di rete

DISPOSIZIONE

Se dopo 2 mesi dalla ricezione della richiesta di accesso da parte dell'operatore di rete non viene trovato un compromesso, ciascuna delle parti (proprietario e operatore di rete) ha il diritto di rivolgersi all'Agenzia per le garanzie nelle comunicazioni.

L'Agenzia viene identificata come Organismo nazionale deputato alla risoluzione delle controversie nate tra operatore di rete e gestore dell'infrastruttura di rete fisica o tra operatori di rete.

L'Autorità deve dirimere la controversia rispettando il **principio di proporzionalità** e delineando una **decisione vincolante** per le parti; l'Agenzia interviene per definire le **condizioni eque e ragionevoli** o per determinare il **corrispettivo economico adeguato**, qualora richiesto.

Con riferimento ai provvedimenti normativi precedentemente descritti, si riporta di seguito una schematizzazione degli obblighi previsti nel caso di nuove costruzioni o di ristrutturazioni profonde* nel settore edilizio, differenziando in base al segmento di mercato considerato:

Nuova costruzione o profonde ristrutturazioni*

SCOPO

- Installazione cavidotti o cavedi multiservizi Legge 1º agosto 2002
- Accesso rete ad alta velocità Direttiva europea 15 maggio 2014
- Installazione infrastruttura fisica multiservizio passiva 11 novembre 2014

A CHI SI RIVOLGE

- Installazione cavidotti o cavedi multiservizi Legge 1º agosto 2002
- Accesso rete ad alta velocità Direttiva europea 15 maggio 2014
- Livello minimo di automazione Decreto «requisiti minimi» del 26 giugno 2015

La digitalizzazione dell'edificio e la realizzazione di un'infrastruttura che possa garantire una miglior gestione dei servizi presenti sono temi affrontati da diversi anni a livello normativo e regolatorio. Complice la maggior consapevolezza degli utenti degli edifici nel settore terziario, la necessità di intervenire a livello legislativo è stata più rilevante in ambito residenziale dove invece il problema appariva più significativo.

In questo settore, una svolta importante per la diffusione del concetto di *Smart Building* è senza dubbio rappresentata dal **decreto**11 novembre 2014, il quale ha previsto l'introduzione dell'obbligo di dotare di un'infrastruttura fisica multiservizio passiva tutti i nuovi edifici e/o le profonde ristrutturazioni realizzate a partire da luglio 2015.

Nonostante l'obbligatorietà di tale decreto, **molti addetti ai lavori non hanno recepito e applicato istantaneamente** quanto previsto dalla legge, determinando un ritardo nella sua concreta applicazione. Infatti, a detta degli operatori del mercato, tra i numerosi ostacoli che ne hanno frenato la diffusione troviamo:

- Termine «predisposizione»: la presenza di questo termine all'interno del testo ha lasciato alcuni margini interpretativi ed
 ha fuorviato alcuni player dal considerare vincolante il requisito dell'installazione dell'impianto fisico multiservizio passivo.
 Alcuni addetti ritenevano sufficiente la sola predisposizione dell'impianto e non la connessione dello stesso.
- Frammentarietà e modus operandi consolidato: la realizzazione di un nuovo edifico e/o la ristrutturazione di un edificio
 esistente coinvolgono diversi attori della filiera: progettisti, pubbliche amministrazioni, costruttori, installatori, eccetera.
 Tale frammentarietà, unita all'abitudine a lavorare in un certo contesto e con modalità consolidate, ha reso più complesso
 il recepimento della normativa da parte di tutte le figure coinvolte.
- Conoscenza della normativa: gli installatori d'impianto hanno fin da subito recepito l'imposizione normativa di dotare gli
 edifici dell'infrastruttura fisica multiservizio passiva; in seguito, molti installatori hanno erogato corsi di formazione ad altri
 operatori del settore che non erano entrati immediatamente in contatto con le nuove disposizioni normative.

- La situazione sembra essere decisamente migliorata negli ultimi anni, soprattutto se si guarda al contesto delle nuove
 costruzioni; infatti, alcuni player del mercato hanno evidenziato come dal 2017 ad oggi si sia registrata una crescita percentuale costante a doppia cifra in termini di fatturato annuo relativo all'installazione di questo tipo di impianto. Al 2020,
 l'infrastruttura fisica multiservizio è presente nel 50-60% delle nuove costruzioni in ambito residenziale.
- Questo risultato, seppur parziale e ancora caratterizzato da ampi margini di miglioramento, è stato possibile grazie ad una
 crescente conoscenza da parte degli addetti ai lavori degli obblighi e delle responsabilità associate alle disposizioni emanate all'interno del decreto, oltre che alla sempre maggiore consapevolezza del valore aggiunto che tale infrastruttura
 può rappresentare per un edificio.
- Dal confronto con gli operatori di settore è emerso un ulteriore tema relativo alla necessità di prevedere la realizzazione di
 un'infrastruttura fisica all'interno di ciascun appartamento di un condominio; infatti, spesso l'investimento realizzato per la
 creazione di un'infrastruttura multiservizio dell'edificio condominiale rischia di essere vanificato dalla presenza di un
 router che non ha la capacità di sopportare la contemporanea connessione di numerosi device. Pertanto, al fine di poter
 garantire un servizio adeguato all'utente finale, potrebbe essere utile prevedere la realizzazione di un'ulteriore livello creando
 un'infrastruttura fisica multiservizio ad hoc all'interno di ciascun appartamento/nucleo familiare.

IL SUPERBONUS: AGGIORNAMENTO E DATI PRINCIPALI

Nel Maggio 2020, per contrastare gli effetti sul settore causati dalla pandemia globale generata da Covid-19, il Consiglio dei Ministri approvava il **Decreto Rilancio** (D.L n. 34/2020), norma che prevede l'istituzione di un **Superbonus al 110%** con lo scopo di detrarre fiscalmente, nell'arco di cinque anni, una serie di interventi di riqualificazione del patrimonio edilizio.

Il Decreto Rilancio si rivolge principalmente al settore residenziale e riguarda interventi per il miglioramento dell'isolamento termico, la sostituzione di impianti di riscaldamento e la riduzione del rischio sismico, possibilmente combinati con interventi quali l'installazione di impianti fotovoltaici, sistemi di accumulo o colonnine di ricarica elettrica.

Il **Decreto «Rilancio»** (legge 19 maggio 2020, n. 34) e le successive modifiche ed integrazioni stabiliscono una detrazione pari al 110% delle spese relative a interventi di efficienza energetica e di misure antisismiche sugli edifici sostenute nel periodo compreso tra il 1º luglio 2020 e il 30 giugno 2022.

La detrazione è ripartita dagli aventi diritto in 5 quote annuali di pari importo e in quattro quote annuali di pari importo per la parte di spesa sostenuta nel 2022.

Il decreto legge n.59 del 2021 ha prorogato i termini per fruire dell'agevolazione fiscale alle date:

Per gli interventi effettuati dalle persone fisiche, che entro il 30 giugno 2022 abbiano effettuato almeno il 60% dell'intervento complessivo, e dai condomini indipendentemente dallo stato di avanzamento dei lavori.

Per gli interventi effettuati dagli IACP, che entro il 30 giugno 2023 abbiano effettuato almeno il 60% dell'intervento complessivo.

Un ulteriore aggiornamento riguarda i **beneficiari**, che sono stati **estesi alle organizzazioni non lucrative di utilità sociale**, a condizione che esse prestino servizi sociosanitari e assistenziali e che i membri del consiglio di amministrazione non percepiscano compenso per la propria funzione.

Persone fisiche(*) (per un massimo di due unità immobiliari)

Istituti autonomi case popolari (IACP) od enti simili su immobili adibiti ad edilizia residenziale pubblica

Cooperative di abitazione a proprietà indivisa

Enti del Terzo Settore e ASD (Associazioni Sportive Dilettantistiche)

Organizzazioni non lucrative di utilità sociale

*) L'agevolazione fiscale è estesa a chi svolge attività di impresa, su singole unità immobiliari estranee all'attività esercitata.

Vota: le norme non si applicano alle abitazioni di tipo A1 (signorile), A8 (ville) e A9 (castelli ovvero palazzi di eminenti pregi artistici o storici)

DECRETO LEGGE RILANCIO

SUPERBONUS

L'articolo 119 del Decreto Rilancio contiene indicazioni relative alla tipologia di interventi di efficienza energetica ed ai requisiti minimi da soddisfare per accedere alla detrazione con aliquota maggiorata.

Gli interventi considerati sono di due tipologie: gli **interventi trainanti e gli interventi trainati**. I cosiddetti interventi **«trainanti»** inclusi nel decreto riguardano:

- isolamento termico delle superfici opache;
- sostituzione degli impianti di climatizzazione invernale esistenti con impianti per il riscaldamento, il raffrescamento o la fornitura di acqua calda sanitaria

L'aliquota agevolata al 110% si applica anche agli interventi contenuti nel DL n.63 del 2013 **se eseguiti congiuntamente agli interventi trainanti**, descritti nelle slide successive, ed alle opere di demolizione e ricostruzione degli edifici, a patto che mantengano la volumetria preesistente.

Ai fini dell'accesso alla detrazione, gli interventi devono garantire il miglioramento di **almeno due classi energe- tiche** o il conseguimento della classe A+, da dimostrare mediante **l'attestato di prestazione energetica - A.P.E**.

Sono di seguito descritti gli interventi cosiddetti «trainanti» inseriti nel Decreto Rilancio ed ammessi al Superbonus:

TIPOLOGIA DI INTERVENTO	MASSIMALE DI SPESA	TIPOLOGIA DI EDIFICIO
	50.000€	 per gli edifici unifamiliari per le unità immobiliari funzionalmente indipendenti
Isolamento termico delle superfici opache sull'involucro (> 25% della superficie disperdente lorda dell'edificio) e di coibentazione del tetto.	40.000€	per ciascuna unità immobiliare - edifici da 2÷8 unità immobiliari
Colbentazione dei tetto.	30.000€	per ciascuna unità immobiliare - edifici > 8 unità immobiliari
Sostituzione degli impianti di climatizzazione invernale esistenti con impianti per il riscaldamento, il raffrescamento o la fornitura di acqua calda sanitaria con: • Caldaia a condensazione	30.000€	per gli edifici unifamiliari per le unità immobiliari funzionalmente indipendenti
Pompa di calore Impianti ibridi Geotermici anche abbinati all'installazione di impianti fotovoltaici e relativi sistemi di accumulo	20.000€	per ciascuna unità immobiliare - edifici da 2÷8 unità immobiliari
Micro-cogenerazione Collettori solari Allaccio a sistemi di teleriscaldamento efficiente	15.000€	per ciascuna unità immobiliare - edifici > 8 unità immobiliari

Il Decreto Rilancio estende la detrazione nella misura del 110% ad una serie di interventi trainati:

- installazione di impianti fotovoltaici (eventualmente integrati con sistemi di accumulo), a patto che essa sia eseguita congiuntamente a uno degli interventi di riqualificazione energetica o di miglioramento sismico;
- installazione di infrastrutture per la ricarica di veicoli elettrici, a patto che essa sia eseguita congiuntamente a uno degli interventi di riqualificazione energetica;
- interventi di eliminazione delle barriere architettoniche, per favorire la mobilità all'interno e all'esterno dell'abitazione a portatori di handicap e persone sopra i 65 anni.

	TIPOLOGIA DI INTERVENTO	MASSIMALE DI SPESA		
#	Installazione su edifici e strutture ad essi pertinenziali di impianti fotovoltaici connessi alla rete elettrica	 Tetto massimo di spesa: 48.000 € 2.400 €/kW di potenza nominale dell'impianto; 1.600 €/kW di potenza nominale, per interventi di trasformazione sistematica dell'edificio. 		
-	Installazione di sistemi di accumulo integrati con gli impianti fotovoltaici	1.000 €/kWh di capacità del sistema di accumulo		
	Installazione di infrastrutture per la ricarica di veicoli elettrici negli edifici	 2.000 €, edificio unifamiliare 1.500 €, edificio plurifamiliare fino a 8 colonnine 1.200 €, edificio plurifamiliare più di 8 colonnine 		
	Eliminazione di barriere architettoniche(*)	Tetto massimo di spesa 96.000€		

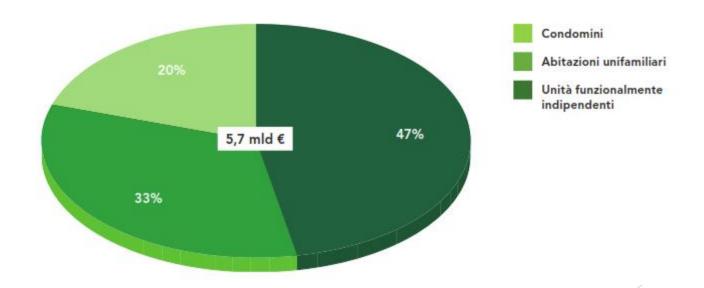
AGGIORNAMENTO 2021

DECRETO LEGGE RILANCIO

LA PROCEDURA PER L'OTTENIMENTO DELL'AGEVOLAZIONE

L'art. 33 del Decreto Legge n.77/2021 **semplifica la disciplina per fruire del Superbonus** stabilendo che gli **interventi** incentivabili, con esclusione di quelli comportanti la demolizione e la ricostruzione degli edifici, sono **realizzabili mediante CILA (Comunicazione asseverata di inizio attività)**.

Gli interventi realizzabili con la CILA sono **considerati di manutenzione straordinaria e «leggera»,** ovvero non comportano modifiche strutturali; per tale motivo, **nella documentazione da presentare è esclusivamente richiesta la descrizione dell'intervento** e **le varianti in corso d'opera** sono da comunicare a fine lavori ad integrazione della CILA presentata.


La presentazione della CILA **sostituisce la necessità di prova dello stato legittimo dell'immobile**, documentazione che serve a certificare la regolarità urbanistica.

L'obiettivo di questa procedura semplificata è di **ridurre i tempi di attesa** per l'apertura dei cantieri e di **agevolare l'efficientamento** in particolar modo degli **edifici datati**, per i quali il reperimento dell'intero stato legittimo dell'immobile è causa di rallentamenti nell'iter autorizzativo.

- Ad un anno dall'entrata in vigore del Decreto Rilancio, i dati pubblicati dall'Agenzia delle Entrate confermano la percezione emersa già nella scorsa edizione dello Smart Building Report, nel quale si evidenziava il forte interesse verso il Superbonus manifestato da parte del mercato.
- Al 31 agosto 2021 sono state presentate oltre 37.000 asseverazioni per la realizzazione di interventi associabili ad un valore di mercato pari a 5,7 mld €, che corrispondono ad oltre 6,2 mld € di detrazioni. Inoltre, il 69% degli investimenti stanziati è riferito a lavori che sono già stati completati.
- La ripartizione degli investimenti è sbilanciata nei confronti dei condomini, che assorbono circa il 47% del totale degli investimenti effettuati, sebbene abbiano effettuato solo il 13% delle richieste; le abitazioni unifamiliari e funzionalmente indipendenti, invece, a fronte di oltre 29.000 asseverazioni depositate, hanno realizzato un volume di investimenti rispettivamente pari al 33% e al 20%.

- L'estensione del periodo di scadenza del **Superbonus al 30 giugno 2022**, di recente approvazione, **non fornisce comunque le garanzie sufficienti** agli operatori del settore per intraprendere progetti **a medio-lungo termine**.
- Dal confronto diretto è emersa, sia da parte degli operatori del mercato che dei clienti, l'esigenza di sviluppare un sistema di
 incentivi con una visione di medio termine, che possa garantire loro di strutturare un piano di interventi con una prospettiva
 temporale superiore ad un anno. È stato evidenziato come sia diffusa la perplessità di attivare procedure di ristrutturazione
 senza la certezza di riuscire a completare i lavori entro la scadenza del periodo di incentivazione.
- Sebbene il Decreto semplificazioni abbia eliminato l'obbligo di certificazione dello stato legittimo dell'immobile, gli operatori
 del settore dati gli elevati costi degli interventi spingono i propri clienti a sottoporre la domanda per l'esecuzione degli
 interventi qualora si abbia garanzia della completa congruità urbanistica dell'edificio su cui viene operato l'intervento. Da dati
 lstat 2019, si evidenzia però come sia frequente riscontrare esempi di abusi edilizi: la media di nuove costruzioni abusive ad uso
 residenziale raggiunge un valore pari al 18%.
- Un'altra tematica che rappresenta un ostacolo agli investimenti è legata all'aumento dei prezzi dei materiali necessari allo svolgimento degli interventi di ristrutturazione tramite il Superbonus. In altre parole, l'introduzione dell'incentivo al 110% ha generato un effetto volano sui prezzi, ad esempio, di polistirene e ponteggi, che ha ridotto notevolmente i margini realizzabili dagli operatori o la volontà dei clienti di intraprendere questi interventi.

I PRINCIPALI STRUMENTI DI FINANZIAMENTO CHE POSSONO SUPPORTARE LA DIFFUSIONE DEL PARADIGMA DELLO SMART BUILDING: IL NEXT GENERATION EU ED IL *PNRR*

NEXT GENERATION EU

ITER APPROVATIVO: TIMELINE

2 MAGGIO 2018

Il 2 maggio 2018 la Commissione ha presentato la sua proposta per il prossimo bilancio a lungo termine dell'**UE**. La proposta quadro è stata immediatamente seguita da proposte legislative per i 37 programmi settoriali (coesione, agricoltura, Erasmus, Orizzonte Europa, eccetera). Tra il 2018 e l'inizio del 2020 la Commissione ha lavorato di concerto con le presidenze di turno del Consiglio e in stretta collaborazione con il Parlamento Europeo per portare avanti i negoziati.

27 MAGGIO 2020

Il 27 maggio 2020, in risposta alla crisi senza precedenti causata dal coronavirus, la Commissione europea ha proposto lo strumento temporaneo per la ripresa Next Generation EU, dotato di 750 miliardi di euro, oltre a un rafforzamento mirato del bilancio a lungo termine dell'UE per il periodo 2021-2027

21 LUGLIO 2020

Il 21 luglio 2020 i capi di Stato o di Governo dell'UE hanno raggiunto un accordo storico sul pacchetto. Da allora il Parlamento europeo e il Consiglio, con la partecipazione della Commissione europea, hanno tenuto 11 dialoghi politici trilaterali sull'accordo con l'obiettivo di perfezionarne i parametri finali.

17 DICEMBRE 2020

Con il consenso del Parlamento europeo, la Commissione ha approvato il regolamento per il nuovo Bilanco a lungo termine 2021 – 2027.

NEXT GENERATION EU

CHE COS'È E COME È COMPOSTO

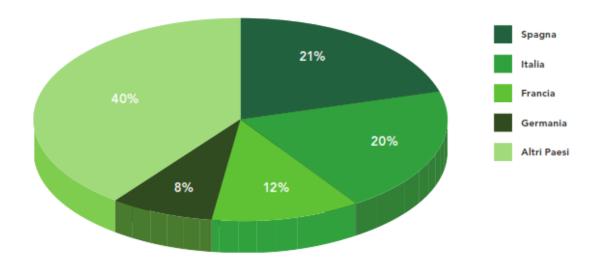
Il 10 Novembre 2020, il **Parlamento europeo** e gli **Stati membri**, insieme alla **Commissione**, hanno raggiunto l'accordo per un pacchetto di finanziamenti pari a **1.800 miliardi di Euro**, il più grande mai stanziato dall'Unione Europea. Lo scopo di tale pacchetto è quello di contribuire al recupero dei Paesi membri a seguito della pandemia COVID-19.

Dei 1.800 miliardi stanziati, 1.074 miliardi saranno destinati al Bilancio europeo 2021-2027, mentre 750 miliardi daranno vita al Next Generations EU, uno strumento di ripresa temporaneo per riparare i danni economici e sociali immediati causati dalla pandemia di coronavirus e per creare un'Europa post COVID-19 più sostenibile, digitale, resiliente e adeguata alle sfide future.

I **750 Miliardi** destinati al **Next Generation EU** saranno divisi in programmi specifici a seconda delle attività da finanziare con la seguente ripartizione:

NEXT GENERATION EU – 750 MLD €						
DISPOSITIVO EUROPEO PER LA RIPRESA E LA RESILIENZA PONDO PER UNA TRANSIZIONE GIUSTA (JTF) SVILUPPO RURALE FONDO INVEST EU ORIZZONTE EUROPA RESC EU						RESC EU
672,5 mld €	47,5 mld €	10 mld €	7,5 mld €	5,6 mld €	5 mld €	1,9 mld €

NEXT GENERATION EU


RIPARTIZIONE A LIVELLO EUROPEO

Considerando le sovvenzioni relative al Dispositivo Europeo per la ripresa e la resilienza, a Spagna, Italia, Francia e Germania sono destinati circa il 61% dei fondi totali. In particolare la Spagna è il Paese con il più alto ammontare di fondi a disposizione, 69,5 mld €, seguito dall'Italia, 68,9 mld €.

Dei fondi totali allocati a ciascuno Stato Membro, solo il **70% circa è fissato**, mentre il **30% potrà variare** entro Giugno 2022 in base alla crescita del **prodotto interno lordo** dei vari Paesi nel **2020 e 2021**.

Considerando solo il 70% dei fondi totali, l'Italia si colloca al primo posto con circa 47,9 mld €, seguito dalla Spagna con 46,6 mld €.

RIPARTIZIONE DELLE SOVVENZIONI DEL DISPOSITIVO EUROPEO PER LA RIPRESA E LA RESILIENZA

IL PNRR ITALIANO

13 ASSI STRATEGICI

Al fine di destinare ad azioni concrete i finanziamenti in arrivo dall'Europa, Il **29 Aprile 2021 il Consiglio dei Ministri** ha approvato in via definitiva la proposta del **Piano Nazionale Ripresa e Resilienza** (*PNRR*), dopo aver ricevuto il consenso del Parlamento il 26 (Camera) e 27 (Senato) Aprile. Il piano, infine, è stato inviato alla Commissione Europea il 30 aprile 2021.

Per il rilancio del Paese, sono previsti 3 «assi strategici» condivisi anche a livello europeo:

TRANSIZIONE ECOLOGICA

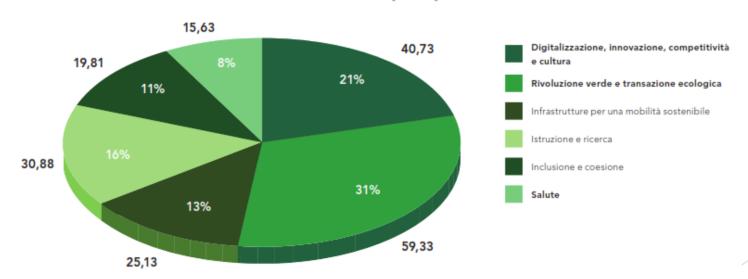
«La base del nuovo modello economico e sociale di sviluppo su scala globale, in linea con l'Agenda 2030 per lo Sviluppo Sostenibile delle Nazioni Unite».

DIGITALIZZAZIONE E INNOVAZIONE

«Migliorare radicalmente la competitività dell'economia, la qualità del lavoro, e la vita delle persone, e rendere l'Italia protagonista della competizione tecnologica globale».

INCLUSIONE SOCIALE

«Crescita inclusiva e coesione sociale e territoriale, accanto alla transizione verde e digitale, sono due dei pilastri fondamentali su cui dovranno poggiare la programmazione e il contenuto dei PNRR»



Secondo il piano di Governo, l'importo proveniente dal Dispositivo europeo per la ripresa e la resilienza è di 191,5 mld € (68,9 mld € di sovvenzioni e 122,6 mld € di prestiti) per il periodo 2021-2026. A questi si aggiungono ulteriori 30,6 mld €, facenti parte di un Fondo complementare, finanziati tramite lo scostamento pluriennale di bilancio approvato dal Consiglio dei Ministri il 15 aprile, e 13 mld € resi disponibili dal REACT-EU. Il totale delle risorse previste nel PNRR italiano è quindi pari a 235,1 mld €.

Nel Piano sono individuate 6 Missioni, a loro vola suddivise in 16 Componenti, funzionali a realizzare gli obiettivi economico-sociali definiti nella strategia del Governo. Le Missioni di interesse per il presente Report sono denominate «Digitalizzazione, innovazione, competitività e cultura», «Rivoluzione verde e transizione energetica» e «Salute» per le quali sono stanziate rispettivamente 21%, 31% e 8% delle risorse:

VOLUMI STANZIATI DAL PNRR PER LE 6 MISSIONI [MLD €]

IL PNRR ITALIANO

QUADRO SINOTTICO DEI PROVVEDIMENTI CON IMPATTO SUGLI SMART BUILDING

All'interno del *PNRR* vi sono diverse **misure (siano esse investimenti o riforme)** che hanno una **connessione diretta o indiretta con** lo sviluppo del paradigma dello *Smart Building*; in particolare:

MISSIONE 1: DIGITALIZZAZIONE, INNOVAZIONE, COMPETITIVITÀ E CULTURA

Componente 2:

Digitalizzazione, innovazione e competitività nel settore produttivo

<u>Misura 1</u>: Reti ultraveloci (5G)

DIGITALIZZAZIONE

Connettività*

MISSIONE 2: RIVOLUZIONE VERDE E TRANSIZIONE ECOLOGICA

Componente 2:

Energia rinnovabile, idrogeno, rete e mobilità sostenibile

Componente 3:

Efficienza energetica e riqualificazione degli edifici

Misura 1:

Incrementare la quota di energia prodotta da fonti di energia rinnovabile Misura 4:

Sviluppare un trasporto locale più sostenibile

Misura 1:

Efficientamento energetico edifici pubblici

Misura 2:

Efficientamento energetico e sismico edilizia residenziale privata e pubblica

Misura 3:

Sistemi di teleriscaldamento

ENERGY COMMUNITY

Energy*

PUNTI DI RICARICA ELETTRICA

Comfort*

RIQUALIFICAZIONE EDILIZIA

Energy* / Comfort*

MISSIONE 2: RIVOLUZIONE VERDE E TRANSIZIONE ECOLOGICA

Componente 2:

Energia rinnovabile, idrogeno, rete e mobilità sostenibile

Componente 3:

Efficienza energetica e riqualificazione degli edifici

Misura 1:

Incrementare la quota di energia prodotta da fonti di energia rinnovabile Misura 4:

Sviluppare un trasporto locale più sostenibile

Misura 1:

Efficientamento energetico edifici pubblici

Misura 2:

Efficientamento energetico e sismico edilizia residenziale privata e pubblica

Misura 3:

Sistemi di teleriscaldamento

ENERGY COMMUNITY

Energy*

PUNTI DI RICARICA ELETTRICA

Comfort*

RIQUALIFICAZIONE EDILIZIA

Energy* / Comfort*

QUADRO SINOTTICO DEI PROVVEDIMENTI CON IMPATTO SUGLI SMART BUILDING

All'interno del PNRR vi sono diverse misure (siano esse investimenti o riforme) che hanno una connessione diretta o indiretta con il concetto di **Smart Building**; in particolare:

MISSIONE 6: SALUTE					
Componente 1: Reti di prossimità, strutture e telemedicina per l'assistenza sanitaria territoriale	<u>Componente 2</u> : Innovazione, ricerca e digitalizzazione del Servizio Sanitario Nazionale				
_	<u>Misura 1</u> : Aggiornamento tecnologico e digitale				

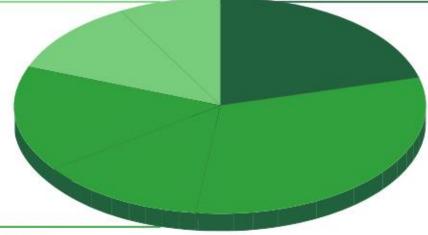
TELEMEDICINA

DIGITALIZZAZIONE **SERVIZI**

HEALTH*

MISSIONE 1: DIGITALIZZAZIONE, INNOVAZIONE, COMPETITIVITÀ E CULTURA |

LA SUDDIVISIONE IN COMPONENTI


Per la **Missione 1 «Digitalizzazione, innovazione, competitività e cultura»**, il PNRR ha stanziato **40,73 mld €** ripartiti nelle seguenti 3 Componenti:

- componente 1 Digitalizzazione, innovazione e sicurezza nella Pubblica Amministrazione;
- componente 2 Digitalizzazione, innovazione e competitività nel settore produttivo;
- componente 3 Turismo e cultura 4.0.

La Componente 2 «Digitalizzazione, innovazione e competitività nel settore produttivo» può usufruire di circa 24,30 mld € (circa il 60% del totale della Missione 1).

INVESTIMENTI PER OGNI COMPONENTE DELLA MISSIONE 2 [MLD €]

Componente 3 – Turismo e cultura 4.0: 6,68 mld €

Componente 1 – Digitalizzazione, innovazione e sicurezza nella Pubblica Amministrazione: 9,75 mld €

Componente 2 – Digitalizzazione, innovazione e competitività nel settore produttivo: 24,3 mld €


MISSIONE 1: DIGITALIZZAZIONE, INNOVAZIONE, COMPETITIVITÀ E CULTURA |

COMPONENTE 2: SUDDIVISIONE INVESTIMENTI

La Componente 2 mira a perseguire un percorso di digitalizzazione, innovazione e maggiore competitività del sistema produttivo italiano, che costituisce un elemento portante dell'economia e del PIL nazionale; per tale motivo, un processo di digitalizzazione ed innovazione lo renderebbe più competitivo, in particolare a livello internazionale, con grandi benefici per tutta la comunità. Lo sforzo verso la digitalizzazione del sistema produttivo nazionale sarà quindi caratterizzato da investimenti mirati su infrastrutture chiave ed incentivi che permettano uno sviluppo tecnologico più sostenuto.

Si riporta di seguito una suddivisione delle misure presenti all'interno della Componente 2, evidenziando il budget messo a disposizione della **Misura 3** «Reti ultraveloci» (6,31 mld €, circa il 26% del totale).

INVESTIMENTI STANZIATI PER OGNI MISURA DELLA COMPONENTE 2 [MLD €]

MISSIONE 1: DIGITALIZZAZIONE, INNOVAZIONE, COMPETITIVITÀ E CULTURA |

COMPONENTE 2: IL DETTAGLIO DELLE MISURE

MISSIONE

M1: Digitalizzazione, innovazione, competitività e cultura

COMPONENTE

C2: Digitalizzazione, innovazione e competitività nel settore produttivo

MISURA

3. Reti ultraveloci.

CONTENUTI*

Supporto per la fornitura di connessioni a 1Gbps su tutto il territorio nazionale entro il 2026.

INVESTIMENTI*

6,3 mld €: Promozione delle infrastrutture per la cablatura in fibra ottica e per la copertura 5G.

OBIETTIVI INCLUSI NEL PNRR

Connessioni a 1Gbps anche a:

- · edifici nelle zone remote;
- 9.000 edifici scolastici;
- 12.000 punti erogazione del SSN.

Backhauling sottomarino in fibra ottica per 18 isole.

Sviluppo e diffusione del Piano «Italia 5G» nelle aree mobili a fallimento di mercato.

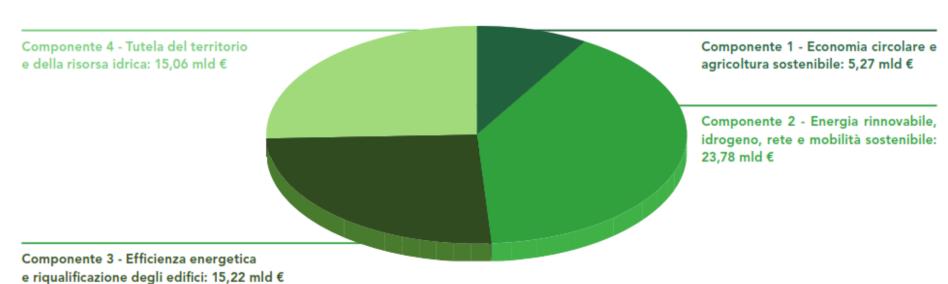
(*) Nota: sono riportati solo gli investimenti in qualche modo afferenti al mondo degli Smart Building Fonte: Documento ufficiale Piano Nazionale di Ripresa e Resilienza.

MISSIONE 2: RIVOLUZIONE VERDE E TRANSIZIONE ECOLOGICA |

LA SUDDIVISIONE IN COMPONENTI

Per la Missione 2 «Rivoluzione verde e transizione ecologica», il PNRR ha stanziato 59,33 mld € ripartiti nelle seguenti 4 Componenti:

Componente 1 - Economia circolare e agricoltura sostenibile;


Componente 2 - Energia rinnovabile, idrogeno, rete e mobilità sostenibile;

Componente 3 - Efficienza energetica e riqualificazione degli edifici;

Componente 4 - Tutela del territorio e della risorsa idrica.

La Componente 2 **«Energia rinnovabile, idrogeno, rete e mobilità sostenibile»** può usufruire di circa **23,78 mld €** (circa il 40% del totale della Missione 2), mentre alla Componente 3 **«Efficienza energetica e riqualificazione degli edifici»** sono destinati **15,22 mld €** (circa 26% del totale della Missione 2).

INVESTIMENTI PER OGNI COMPONENTE DELLA MISSIONE 2 [MLD €]

MISSIONE 2: RIVOLUZIONE VERDE E TRANSIZIONE ECOLOGICA |

COMPONENTE 2: SUDDIVISIONE INVESTIMENTI

La Componente 2 «Energia rinnovabile, idrogeno, rete e mobilità sostenibile» mira a contribuire attivamente al raggiungimento degli obiettivi di decarbonizzazione al 2030 e al 2050, ottemperando ai target definiti nel PNIEC. A tal fine, sono delineati investimenti per aumentare la quota di energia prodotta da fonti rinnovabili, per potenziare e digitalizzare le infrastrutture di rete, per promuovere la produzione e l'utilizzo dell'idrogeno e per rendere più sostenibile il trasporto locale. Inoltre, si vogliono sviluppare settori strategici, al fine di ridurre la dipendenza da importazioni di tecnologie.

Si riporta di seguito una suddivisione delle misure presenti all'interno della Componente 2, evidenziando il budget messo a disposizione della Misura 1 «Incrementare la quota di energia prodotta da fonti di energia rinnovabile» (5,9 mld €, circa il 25% del totale) e della Misura 4 «Sviluppare un trasporto locale più sostenibile» (8,58 mld €, pari a circa il 36% del totale).

INVESTIMENTI PER OGNI COMPONENTE DELLA MISSIONE 2 [MLD €]

5. Sviluppare una leadership internazionale industriale e di ricerca e sviluppo nelle principali filiere della transizione: 2 mld €

4. Sviluppare un trasporto locale più sostenibile: 8,58 mld €

1. Incrementare la quota di energia prodotta da fonti di energia rinnovabile: 5,9 mld €

2. Potenziare e digitalizzare le infrastrutture di rete: 4,11 mld €

3. Promuovere la produzione, distribuzione e gli usi finali dell'idrogeno: 3,19 mld €

MISSIONE 2: DIGITALIZZAZIONE, INNOVAZIONE, COMPETITIVITÀ E CULTURA |

COMPONENTE 2: IL DETTAGLIO DELLE MISURE

MISSIONE

M2: Rivoluzione verde e transizione ecologica

COMPONENTE

C2: Energia rinnovabile, idrogeno, rete e mobilità sostenibile

MISURA

- 1. Incrementare la quota di energia prodotta da fonti di energia rinnovabile
- 4. Sviluppare un trasporto locale più sostenibile

CONTENUTI*

1b: Sostegno per le **installazioni di FER** a comunità delle energie rinnovabili e auto-consumatori di energie rinnovabili congiunti.

4c: Promuovere mobilità sostenibile e accelerare la transizione verso punti di rifornimento per veicoli elettrici

INVESTIMENTI*

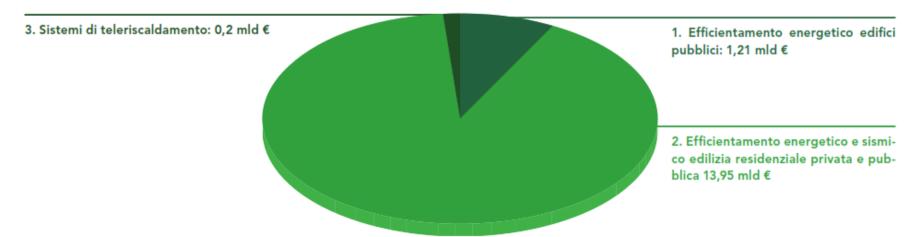
2,2 mld €: Promozione delle rinnovabili per le comunità energetiche e l'autoconsumo

0,74 mld €: Sviluppo infrastruttura di ricarica elettrica

OBIETTIVI INCLUSI NEL PNRR

- 2 GW nuova capacità installata per generare 2.500 GWh annui**
- -1,5 mln di tonnellate di emissioni di CO₂ all'anno
- 7.500 punti di ricarica (PdR) rapida in autostrada
- 13.755 PdR in centri urbani
- 100 PdR con stoccaggio energia

- (*) Sono riportati solo gli investimenti in qualche modo afferenti al mondo degli Smart Building.
- (**) Qualora si preveda di coprire la capacità richiesta con impianti fotovoltaici con producibilità annua pari a 1250h.


MISSIONE 2: RIVOLUZIONE VERDE E TRANSIZIONE ECOLOGICA |

COMPONENTE 3: SUDDIVISIONE INVESTIMENTI

La Componente 3 «Efficienza energetica e riqualificazione edilizia» ha l'obiettivo di rendere più efficienti e sicuri gli edifici italiani con l'ottica di ridurre i consumi e le emissioni di CO₂; in aggiunta, le misure contenute mirano a prevenire il rischio sismico in edifici vetusti. Al fine di migliorare le condizioni abitative e attenuare le problematiche legate alla povertà energetica, la Componente prevede diverse linee di attuazione: il patrimonio edilizio pubblico, il patrimonio immobiliare privato e lo sviluppo dei sistemi di teleriscaldamento.

Si riporta di seguito una suddivisione delle misure presenti all'interno della Componente 3, evidenziando il budget messo a disposizione della Misura 1 «Efficientamento energetico edifici pubblici» (1,21 mld €, circa l'8% del totale), della Misura 2 «Efficientamento energetico e sismico edilizia residenziale privata e pubblica» (13,95 mld €, circa il 91% del totale) e della Misura 3 «Sistemi di teleriscaldamento» (0,2 mld €, pari a circa l'1% del totale).

INVESTIMENTI STANZIATI PER OGNI MISURA DELLA COMPONENTE 3 [MLD €]

MISSIONE 2: RIVOLUZIONE VERDE E TRANSIZIONE ECOLOGICA |

COMPONENTE 3: IL DETTAGLIO DELLE MISURE

MISSIONE

M2: Rivoluzione verde e transizione ecologica

COMPONENTE

C3: Efficienza energetica e riqualificazione degli edifici

MISURA

1. Efficientamento energetico edifici pubblici

CONTENUTI*

1a: Progressiva sostituzione di parte del patrimonio edilizio scolastico per creare strutture moderne e sostenibili.

1b: Rinnovamento delle strutture giudiziarie che inficiano i servizi erogati per ottenere benefici per gli utenti e l'intera comunità

INVESTIMENTI*

0,8 mld €: **Piano di sostituzione** di edifici scolastici e di riqualificazione energetica

0,41 mld €: Efficientamento degli edifici giudiziari

OBIETTIVI INCLUSI NEL PNRR

- Interventi su 195 edifici scolastici
- -50% consumi finali di energia nelle scuole (-3,4 ktep annui)
- -8.400 ton di CO, emesse
- Interventi su 48 edifici entro metà 2026
- -2.500 ton di CO, emesse
- -0,7 ktep annui di consumi finali

(*) Sono riportati solo gli investimenti in qualche modo afferenti al mondo degli Smart Building.

Fonte: Documento ufficiale Piano Nazionale di Ripresa e Resilienza.

MISSIONE

M2: Rivoluzione verde e transizione ecologica

COMPONENTE

C3: Efficienza energetica e riqualificazione degli edifici

MISURA

2. Efficientamento energetico e sismico edilizia residenziale privata e pubblica

3. Sistemi di teleriscaldamento

CONTENUTI*

2a: Estensione del Superbonus dal 2021 al 2023** per stimolare l'economia locale e creare nuovi posti di lavoro nella filiera edilizia.

3b: Finanziamenti per la **costruzione di nuove reti** (o estensione di esistenti) per lo sviluppo del **TLR efficiente*****

INVESTIMENTI*

13,95 mld €: Ecobonus e Sismabonus fino al 110% per l'efficienza energetica e la sicurezza degli edifici

0,2 mld € : Sistemi di teleriscaldamento

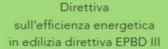
OBIETTIVI INCLUSI NEL PNRR

- Interventi su circa 50.000 edifici all'anno
- -0,93 MtonCO₂ all'anno di riduzione emissioni gas serra (-291 ktep annui sui consumi)
- Sviluppo di 330 km di reti per recupero calore di scarto per un totale di 360 MW
- -40 ktonCO₂ all'anno di riduzione delle emissioni

(***) Teleriscaldamento efficiente: distribuzione di calore generato da FER, da calore di scarto o co-generato in impianti ad alto rendimento Fonte: Documento ufficiale Piano Nazionale di Ripresa e Resilienza.

^(*) Sono riportati solo gli investimenti in qualche modo afferenti al mondo degli Smart Building.

^(**) Fino al 30 giugno 2023 per gli interventi effettuati dagli IACP, a condizione che almeno il 60% dei lavori sia stato effettuato alla fine del 2022; fino al 31 dicembre 2022 per gli interventi effettuati dai condomini, a condizione che almeno il 60% dei lavori sia stato effettuato entro il 30 giugno precedente.


BOX 1: EFFICIENZA ENERGETICA E RIQUALIFICAZIONE DEGLI EDIFICI

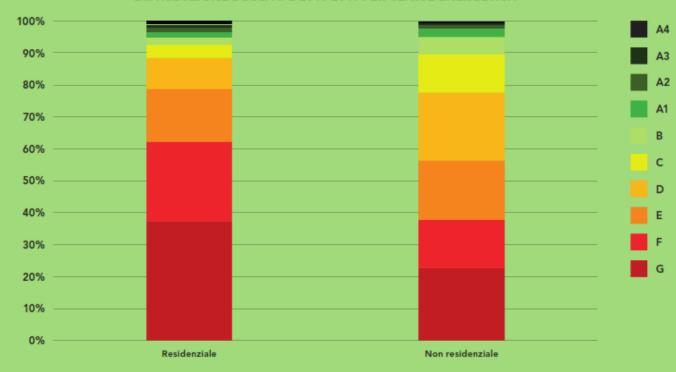
STRATEGIA PER LA RIQUALIFICAZIONE ENERGETICA DEL PARCO IMMOBILIARE NAZIONALE

La stesura della «Strategia per la riqualificazione energetica del parco immobiliare nazionale» (STREPIN) è stata prevista dalla direttiva 2018/844/UE sul tema dell'efficienza energetica nel settore edilizio (recepita nel nostro Paese dal D.Igs 48/2020).

A novembre 2020, il Ministero dello Sviluppo Economico (MiSE) ha pubblicato il documento per la consultazione pubblica, conclusasi il 16 dicembre 2020; il 25 marzo 2021 è arrivato il via libera dalla Conferenza Unificata.

Il Ministero della transizione ecologica (non più il MiSE, come previsto inizialmente) può dare approvazione formale al documento, chiudendo così l'iter di approvazione dello STREPIN, e inviarlo alla Commissione europea.

Fonte: Strategia per la riqualificazione energetica del parco immobiliare nazionale - STREPIN


BOX 2: EFFICIENZA ENERGETICA E RIQUALIFICAZIONE DEGLI EDIFICI |

LO STATO DELL'ARTE

Dall'analisi dei dati forniti dalle Regioni e dalle Province autonome al **Sistema Informativo sugli Attestati di Prestazione Energetica (SIAPE)**, realizzato e gestito da ENEA, emerge che **quasi l'80% degli edifici non residenziali e il 90% di quelli residenziali si trovano nelle classi energetiche D o inferiori**.

Tale dato trova giustificazione se si considera che oltre il 40% del parco edilizio nazionale è costituito da edifici costruiti nel periodo 1945-1972.

DISTRIBUZIONE DEGLI APE 2016-2019 PER CLASSE ENERGETICA

Fonte: Strategia per la riqualificazione energetica del parco immobiliare nazionale – STREPIN

BOX 3: EFFICIENZA ENERGETICA E RIQUALIFICAZIONE DEGLI EDIFICI

TASSO ATTUALE DI RIQUALIFICAZIONE DEL PARCO EDILIZIO NAZIONALE

Per pianificare le azioni necessarie al raggiungimento degli obiettivi di decarbonizzazione al 2030 e al 2050, è utile stimare **il tasso** di riqualificazione del parco edilizio nazionale necessario al loro raggiungimento. Per calcolare questo parametro, ENEA, ISPRA e RSE hanno elaborato il tasso virtuale di ristrutturazione profonda, per permettere di comparare interventi di riqualificazione «semplici» e «profondi».

L'elaborazione ha permesso di **trasformare**, attraverso il risparmio energetico ottenuto con gli interventi realizzati, **il tasso reale di intervento** (che considera tutti gli immobili su cui si è intervenuti, anche in maniera minima), **in un tasso virtuale di ristrutturazione profonda**. Tale valore descrive il tasso di riqualificazione necessario per ottenere i medesimi risparmi energetici mediante ristrutturazioni «edificio-impianto».

L'attuale tasso virtuale di ristrutturazione profonda del parco immobiliare nazionale è stato stimato mediante la consultazione dei dati d'accesso alle detrazioni fiscali per gli interventi di efficienza energetica e per il recupero edilizio realizzati nel periodo 2014-2018 (Ecobonus e Bonus Casa). In particolare, il tasso ha assunto un valore pari allo 0,26%, se consideriamo gli interventi relativi all'Ecobonus, ed un valore di 0,59%, se consideriamo gli interventi relativi al Bonus Casa.

Sommando i due contributi, il tasso virtuale di ristrutturazione profonda totale del parco edilizio nazionale risulta pari allo 0,85%, a fronte di un risparmio energetico di 0,332 Mtep/anno. Tale tasso esprime, perciò, quanti sarebbero stati i m2 riqualificati se gli interventi incentivati fossero stati tutti interventi di ristrutturazione profonda.

Fonte: Strategia per la riqualificazione energetica del parco immobiliare nazionale – STREPIN

BOX 4: EFFICIENZA ENERGETICA E RIQUALIFICAZIONE DEGLI EDIFICI

IL MODELLO "COST-OPTIMAL"

Sulla base di un'analisi costi-benefici, la STREPIN individua, inoltre, alcuni interventi di efficientamento energetico come «efficaci in termini di costi e potenziale nazionale di risparmio».

Questa analisi è stata svolta **per diverse tipologie di edificio** (residenziale monofamiliare, piccolo condominio, grande condominio, edifici a destinazione d'uso uffici e scuole), per edifici **nuovi ed esistenti** (quest'ultimi differenti per epoca di costruzione, rapporto S/V, superficie disperdete, eccetera), **ubicati in zona climatica B** (clima a prevalenza di fabbisogno estivo) **ed E** (prevalenza fabbisogno invernale). Per ogni tipologia analizzata, sono stati presi in considerazione **ristrutturazioni edilizie e impiantistiche, importanti e non, e sono stati individuati il minimo costo globale dell'intervento, il relativo valore ottimale di energia primaria annuale, l'energia primaria globale non rinnovabile e il risparmio di emissioni di CO₂.**

Considerando **l'involucro edilizio** (ad esempio: isolamento a cappotto, sostituzione serramenti), **l'intervento** risulta essere **economicamente sostenibile** solo per i **nuovi edifici** e raramente per quelli esistenti, per lo più risalenti all'epoca di costruzione compresa tra il 1946 ed il 1976. Nelle altre casistiche, considerati gli elevati costi delle opere civili necessarie, gli interventi relativi alla componente impiantistica si sono rivelati la soluzione ottimale:

- Edifici di nuova costruzione monofamiliare ed uffici: utilizzo integrale di pompa di calore per climatizzazione (H+C) e ACS (Full-Electric Building).
- Altre famiglie di edifici: integrazione di pompa di calore, caldaia a gas (condensazione e tre stelle) e multi-split.
- Edifici scolastici: riscaldamento e ACS sono completamente soddisfatti dalla caldaia a condensazione.

Il ricorso a moduli fotovoltaici è presente su tutte le tipologie edilizie, con differente percentuale di copertura dei consumi.

BOX 5: EFFICIENZA ENERGETICA E RIQUALIFICAZIONE DEGLI EDIFICI

EDIFICI RESIDENZIALI - POTENZIALE NAZIONALE DI RISPARMIO NEI 3 MODELLI

Per il settore residenziale, il PNIEC ha definito un risparmio di 0,33 Mtep/anno di energia finale da conseguire nel periodo 2021-2030, consentendo alle emissioni di CO₂ di passare da 44,1 Mton nel 2020 a 32,7 Mton nel 2030, con un risparmio di oltre il 40% rispetto ai livelli del 1990.

Lo strumento modellistico impiegato definisce il tasso virtuale di ristrutturazione profonda annuo necessario per il periodo 2020-2030 al fine del raggiungimento degli obiettivi PNIEC. Per ogni edificio, questo valore è calcolato considerando il mix di interventi di efficientamento energetico ottimale individuato precedentemente attraverso il modello «cost-optimal».

Lo stesso tasso è stato inoltre calcolato ipotizzando che gli interventi di riqualificazione prevedano un adeguamento degli edifici ai Requisiti Minimi vigenti per i nuovi edifici (Modello «RM») e nel caso in cui la riqualificazione preveda una conversione degli edifici in nearly-Zero Energy Building (Modello «nZEB»).

Considerate le diverse ipotesi alla base dei tre modelli, si osserva che il tasso virtuale di ristrutturazione si riduce passando dal modello «Cost-optimal» al modello «nZEB», mentre aumentano i volumi d'investimento necessari a raggiungere il medesimo target PNIEC al 2030.

	«COST-OPTIMAL»	«RM»	«NZEB»		
Tasso di ristrutturazione	0,81%	0,65%	0,62%		
Superficie riqualificata	24.699.000 m2/anno	19.832.600 m2/anno	18.806.600 m2/anno		
Investimenti annui necessari	9,18 mld €/anno	11,09 mld €/anno	11,9 mld €/anno		
Risparmio energetico	0,33 Mtep/anno				
Risparmio emissioni	1,14 MtCO2/anno				

BOX 6: EFFICIENZA ENERGETICA E RIQUALIFICAZIONE DEGLI EDIFICI |

EDIFICI SETTORE TERZIARIO (SCUOLE E UFFICI)- POTENZIALE NAZIONALE DI RISPARMIO

Per il **settore terziario**, lo scenario **PNIEC** definisce un **risparmio di 0,24 Mtep/anno di energia finale** dal 2020 al 2030, consentendo alle **emissioni di CO₂ di passare da 17 Mton nel 2020 a 10,9 Mton nel 2030**. In termini relativi, il **risparmio energetico annuo** da conseguire **nel settore terziario (1,2%)** risulta essere superiore rispetto al valore definito per il **settore residenziale (1%)**.

È stato possibile applicare la metodologia «Cost-optimal» ad uffici e scuole, valutando il mix di interventi di efficientamento energetico necessari a raggiungere il target del PNIEC nei tre modelli definiti per il settore residenziale.

	UFFICI			SCUOLE		
	«COST-OPTIMAL»	«RM»	«nZEB»	«COST-OPTIMAL»	«RM»	«nZEB»
Tasso di ristrutturazione	2,78%	2,44%	2,32%	2,28%	1,94%	
Superficie riqualificata	1.751.800 m²/anno	1.539.800 m²/anno	1.461.700 m²/anno	1.920.000 m²/anno		1.493.700 m²/anno
Investimenti annui necessari	0,693 mld €/anno	0,732 mld €/anno	0,767 mld €/anno	0,551 mld €/anno	0,562 mld €/anno	0,588 mld €/anno
Risparmio energetico						
Risparmio emissioni	0,04 MtCO ₂ /anno				0,03 MtCO ₂ /anno	

BOX 6: EFFICIENZA ENERGETICA E RIQUALIFICAZIONE DEGLI EDIFICI |

EDIFICI SETTORE TERZIARIO - POTENZIALE NAZIONALE DI RISPARMIO

L'obiettivo di risparmio energetico per il settore terziario è stato ripartito nei diversi sotto-settori. Nella tabella sottostante sono riportati i valori del tasso di ristrutturazione, della superficie riqualificata e di investimenti annui necessari, considerando il modello «Cost-optimal» per uffici e scuole, mentre per gli altri sotto-settori è stato preso come riferimento il risparmio specifico ottenibile attraverso il mix di interventi di efficientamento individuato all'interno delle diagnosi energetiche.

	UFFICI	SCUOLA	COMMERCIO	OSPEDALI	ALBERGHI
Tasso di ristrutturazione	2,78%	2,28%	4,9%	4,0%	3,4%
Superficie riqualificata		1.920.000 m²/anno	14.158.000 m²/anno	1.993.800 m²/anno	1.251.700 m²/anno
Investimenti annui necessari	0,693 mld €/anno	0,551 mld €/anno			
Risparmio energetico	0,01 Mtep/anno		0,17 Mtep/anno		0,01 Mtep/anno
Risparmio emissioni	0,04 MtCO _g /anno	0,03 MtCO _g /anno	0,43 MtCO ₃ /anno	0,07 MtCO ₃ /anno	0,03 MtCO ₃ /anno

Mentre il tasso virtuale di ristrutturazione profonda nel settore residenziale per il periodo 2020-2030 è risultato sostanzialmente in linea con il tasso attuale, nel settore terziario risulta già da ora necessario un importante incremento del tasso di riqualificazione rispetto ai valori attuali (passando dall'attuale 0,85% a valori compresi tra 2,28% - 4,9% a seconda della tipologia di edificio considerato).

Fonte: Strategia per la riqualificazione energetica del parco immobiliare nazionale - STREPIN

BOX 7: EFFICIENZA ENERGETICA E RIQUALIFICAZIONE DEGLI EDIFICI |

PROIEZIONI AL 2050 DEL TASSO VIRTUALE DI RISTRUTTURAZIONE NEI DIVERSI SETTORI (1/2)

Con il tasso virtuale di ristrutturazione stimato per il settore residenziale nel periodo 2020-2030 (0,8%) non è possibile raggiungere gli obiettivi al 2050; pertanto, sarà necessario prevedere nel periodo 2030-2050 un aumento degli interventi volti alla riduzione dei consumi di energia finale e delle emissioni di CO₂ in tale settore.

Analizzando i dati ottenuti dallo strumento modellistico per il 2030 e **considerando gli interventi inclusi nel modello «Cost-optimal»**, si può stimare che, per raggiungere l'obiettivo di risparmio emissivo annuale del **periodo 2030-2050**, si dovrebbe conseguire nel **settore residenziale un tasso di riqualificazione pari all'1,16%**. Tale valore scenderebbe allo 0,93% partendo dai m2 riqualificati nel 2030 secondo il modello «*RM*» e a 0,88% considerando il modello «*nZEB*».

INDICATORE	PERIODO 2020-2030	PERIODO 2030-2040	PERIODO 2040-2050
Tasso di riqualificazione annuo settore residenziale			
Tasso di riqualificazione annuo settore terziario	4%		

All'interno della STREPIN si evidenzia come il tasso di riqualificazione annuo calcolato risulti essere inferiore a quello risultante dagli scenari per il 2050 della Long Term Strategy. Infatti, le stime contenute nella STREPIN si riferiscono unicamente ad una modellizzazione del settore residenziale, mentre all'interno della LTS si considera l'intero sistema energetico e si tiene conto anche degli effetti di sistema (ad esempio, emissioni indirette e prezzo dell'energia elettrica).

Pertanto, le **stime del tasso di riqualificazione** annuo individuate dai **modelli «Cost-optimal», «RM» e «nZEB»** nel range di 1,16%-0,88% **sono da considerarsi come una soglia inferiore** di quella reale da dover considerare.

Fonte: Strategia per la riqualificazione energetica del parco immobiliare nazionale - STREPIN

BOX 8: EFFICIENZA ENERGETICA E RIQUALIFICAZIONE DEGLI EDIFICI |

PROIEZIONI AL 2050 DEL TASSO VIRTUALE DI RISTRUTTURAZIONE NEI DIVERSI SETTORI (2/2)

In modo analogo, anche per il settore terziario sarà necessario, tra il 2030 e il 2050, prevedere ulteriori interventi volti all'efficienza energetica e alla riduzione delle emissioni, che dovrebbero passare da 10,9 a 0,6 Mton di CO_2 , al fine di ottemperare all'obiettivo di quasi completa decarbonizzazione del settore al 2050.

Le stime preliminari mostrate all'interno della STREPIN mostrano un tasso di riqualificazione medio annuo del 3,7% per il periodo 2030-2050; tale valore, seppur inferiore a quello previsto per il periodo 2020-2030 in valore assoluto, potrebbe rivelarsi più impegnativo considerando le proiezioni di crescita per il valore aggiunto del settore servizi nel periodo 2030-2050.

In conclusione, con riferimento sia al settore residenziale che al settore terziario, si evidenzia l'esigenza di concentrare gli sforzi tecnici ed economici verso interventi di deep renovation del parco edilizio nazionale.

La Commissione Europea ha tracciato un percorso molto chiaro che deve condurre alla **completa decarbonizzazione** di tutti i settori, compreso quello relativo agli **edifici**. Al fine di raggiungere questo obiettivo, sono state emanate una serie di direttive e strategie con l'obiettivo di definire gli obiettivi ed incentivare gli investimenti per l'**efficientamento energetico** e la **digitalizzazione** degli edifici.

Un ultimo provvedimento è quello relativo allo strumento finanziario del **Next Generation EU** con il quale l'Europa ha messo a disposizione degli Stati Membri una somma considerevole di risorse per **fronteggiare una crisi economico-sanitaria** senza precedenti. **L'Italia**, in modo analogo agli altri Paesi appartenenti all'UE, ha quindi definito un **Piano Nazionale di Ripresa e Resilienza** (*PNRR*) all'interno del quale ha suddiviso gli stanziamenti europei in una serie di iniziative, tra le quali troviamo misure relative all'efficienza energetica in ambito edilizio e alla digitalizzazione del *building*.

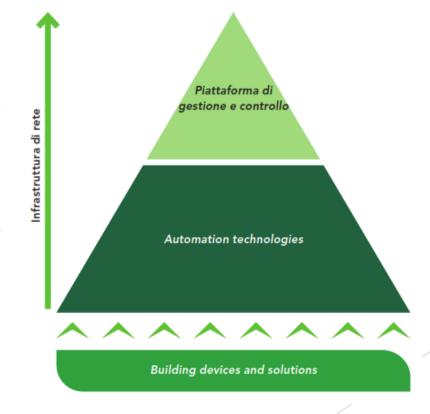
Proprio con riferimento a quest'ultimi due aspetti, risulta di primaria importanza sottolineare come gli **obiettivi** prefissati a livello europeo di net-zero building potranno essere raggiunti solo attraverso la realizzazione di **ingenti investimenti** che possano portare a **ridurre i consumi**, ad aumentare la **penetrazione delle fonti FER** ed all'installazione di un'**infrastruttura digitale** nell'edificio che, attraverso la sensoristica applicata, permetta una corretta gestione dei carichi termici ed elettrici dell'edificio stesso.

I LAYER DELL'ARCHITETTURA DIGITALE DEGLI SMART BUILDING

L'ARCHITETTURA DIGITALE DEGLI SMART BUILDING

LA STRUTTURA FISICA

L'obiettivo della prima sezione di questo capitolo è di costruire un modello di riferimento per descrivere l'architettura digitale di uno Smart Building.

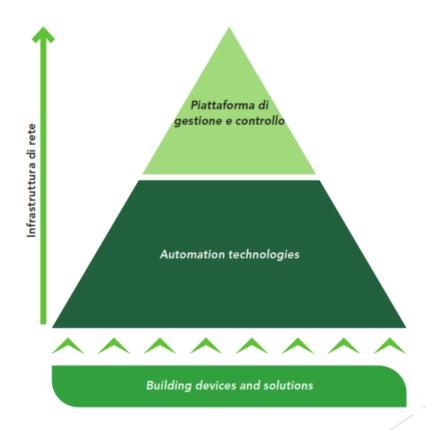

La struttura fisica comprende i dispositivi hardware e software attraverso i quali si realizzano le funzioni che costituiscono la struttura logica:

«Building devices and solutions»: comprendono i diversi impianti e tecnologie presenti all'interno del building intelligente, tra cui tecnologie di generazione di energia, di efficienza energetica, di safety & security ed impianti che garantiscono il comfort, la sicurezza e la salute degli occupanti.

«Automation technologies»: comprendono la sensoristica connessa agli impianti di cui al punto precedente e finalizzata alla raccolta dati, oltre agli attuatori che eseguono sugli impianti i comandi elaborati dalle «Piattaforme di controllo e gestione».

L'ARCHITETTURA DIGITALE DEGLI SMART BUILDING |

LA STRUTTURA FISICA


Parallelamente alla struttura logica dell'architettura digitale è possibile descrivere la corrispondente struttura fisica, che comprende i dispositivi hardware e software attraverso i quali si realizzano le funzioni descritte precedentemente:

«Piattaforma di controllo e gestione»: comprendono i software di raccolta, elaborazione e analisi dei dati acquisiti dalla sensoristica installata sugli impianti.

«Infrastruttura di rete»: comprende i mezzi di comunicazione, wireless o cablati, che permettono la comunicazione tra sensori, attuatori e la piattaforma di controllo e gestione.

L'ARCHITETTURA DIGITALE DEGLI SMART BUILDING |

LA STRUTTURA FISICA - BUILDING DEVICES AND SOLUTIONS

La componente **building devices and solutions** comprende gli impianti presenti all'interno degli *Smart building*, classificabili sulla base dei differenti comparti in:

TECNOLOGIE DI PRODUZIONE DI ENERGIA ELETTRICA

- Fotovoltaico
- Sistemi di accumulo
- Cogenerazione

TECNOLOGIE DI PRODUZIONE EFFICIENTE DI ENERGIA TERMICA

- Caldaie a condensazione
- Pompe di calore
- Solare termico
- Sistemi per la climatizzazione

TECNOLOGIE PER LA SICUREZZA DELLE PERSONE

- Illuminazione di emergenza
- Sistemi antincendio

TECNOLOGIE PER LA SICUREZZA DEGLI ASSET

- Videosorveglianza e controllo accessi
- Impianti antintrusione
- Serrature

TECNOLOGIE PER IL COMFORT ABITATIVO

- Punti di ricarica
- Illuminazione
- Forza motrice
- Chiusure vetrate
- Superfici opache

TECNOLOGIE PER LA SALUTE DEGLI OCCUPANTI

 Sistemi di monitoraggio della qualità dell'aria (IAQ)

I più comuni sensori che costituiscono la componente Automation technologies della **struttura fisica** di uno Smart Building sono:

SENSORI

SENSORI ACUSTICI

Sensori che permettono di valutare l'ambiente sonoro circostante.

SENSORI DI LUMINOSITÀ

Sensori che monitorano la concentrazione della luce. Controllano accensione e spegnimento delle luci contribuendo al risparmio energetico.

SENSORI DI PRESSIONE

Sensori che convertono la grandezza fisica della pressione in un segnale di uscita.

SENSORI OTTICI

Sensori che convertono la grandezza fisica della pressione in un segnale di uscita.

SENSORI DI TEMPERATURA

Sensori responsabili del monitoraggio continuo della temperatura interna negli Smart Building.

SENSORI DI UMIDITÀ

Chiamati anche igrometri, questi sensori sono in grado di misurare il livello di umidità nell'ambiente circostante.

SENSORI DI PROSSIMITÀ

Sensori che monitorano il movimento in un'area per molteplici scopi, tra cui la sicurezza.

SENSORI DI IRRAGGIAMENTO

Sensori utili per monitorare l'energia irradiata, in particolare sui telai dei moduli fotovoltaici.

SENSORI

SENSORI PER SICUREZZA SERRATURE

Sensori responsabili del monitoraggio delle serrature in tempo reale.

SMART METER

Sistemi per la lettura e la gestione dei contatori di energia elettrica, gas e acqua.

SENSORI DI PRESENZA

Sensori in grado di rilevare la presenza di un corpo o di un oggetto nelle immediate vicinanze.

SENSORI AIR QUALITY

Sensori responsabili del monitoraggio di varie forme di inquinamento dell'aria.

SENSORI DI FUMO

Sensori responsabili del monitoraggio della concentrazione di fumo nell'ambiente.

SENSORI DI CALORE

Sensori che generano un segnale elettrico proporzionale al calore che attraversa la sua superficie.

SENSORI DI FLUSSO D'ARIA

Sensori per monitorare i flussi d'aria e usati per regolare ventole e condizionamento degli edifici.

SENSORI BIOMETRICI

Sensori che permettono di identificare una persona sulla base di alcune caratteristiche (impronta digitale, riconoscimento facciale)

I più comuni attuatori che costituiscono la componente Automation technologies della **struttura fisica** di uno Smart Building sono:

ATTUATORI

ATTUATORI DIMMER

Dispositivi che regolano l'intensità luminosa di un qualsiasi corpo illuminante.

ATTUATORI TERMOELETTRICI

Dispositivi meccanici che ricevono i comandi da un termostato e che si occupano di aprire o chiudere la valvola su cui sono stato montati

ATTUATORI A CREMAGLIERA

Dispositivi che regolano la chiusura e apertura automatica ad esempio di una vetrata

ATTUATORI DI APERTURA

Dispositivi che traducono il segnale elettrico in ingresso e permettono l'apertura di serratura.

ATTUATORI PIROTECNICI

Dispositivi che, nel caso di intervento dei sensori di fumo, provocano l'innesco dello sprinkler

ATTUATORI ELETTROSTATICI (RELÈ)

Dispositivi che regolano l'attivazione/spegnimento di sistemi VMC (ventilazione meccanica intelligente) e prese elettriche.

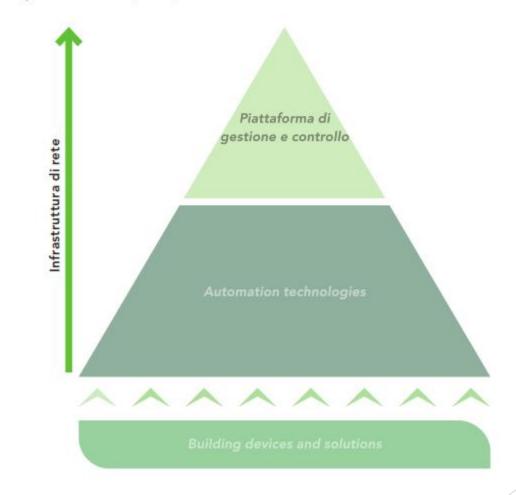
In base alla configurazione presente ed alla tipologia di attuatore, gli attuatori **possono essere azionati manualmente oppure in** maniera autonoma.

La componente «piattaforme di gestione e controllo» è costituita da **software che consentono la supervisione e la gestione** (sia integrata che non) **degli impianti presenti all'interno di un edificio**.

La logica di controllo può definirsi come l'insieme delle funzionalità necessarie a modificare i messaggi in uscita diretti all'impianto da controllare, mediante l'elaborazione dei messaggi in ingresso inviati dai sensori.

Esistono 3 tipologie di piattaforme per il controllo degli impianti all'interno di uno Smart Building:

- Piattaforme public cloud: I software cloud pubblici sono il tipo più comune di sistemi di distribuzione cloud computing. In
 un cloud pubblico tutto l'hardware, il software e le altre infrastrutture di servizio sono di proprietà del provider dei servizi cloud, che si occupa anche della loro gestione. Le risorse cloud, come server e archiviazione vengono distribuite tramite
 Internet. Microsoft Azure costituisce un esempio di cloud pubblico.
- Piattaforme private cloud: Un cloud privato è costituito da risorse di cloud computing usate esclusivamente da un'azienda
 o da un'organizzazione. Il cloud privato può essere situato fisicamente nel data center locale dell'organizzazione oppure
 può essere ospitato da un provider di servizi di terze parti. In un cloud privato, tuttavia, i servizi e l'infrastruttura vengono
 sempre gestiti in una rete privata e l'hardware e il software sono dedicati esclusivamente alla rispettiva organizzazione.
- Piattaforme on-premise: Il software on-premise si traduce nell'installazione ed esecuzione del software direttamente su
 macchina locale, sia essa aziendale che privata, intesa sia come singola postazione di lavoro che come server raggiungibile
 esclusivamente dall'interno della rete aziendale. Il sistema informatico è installato/erogato esclusivamente nel luogo (sito,
 edificio) dove è utilizzato.

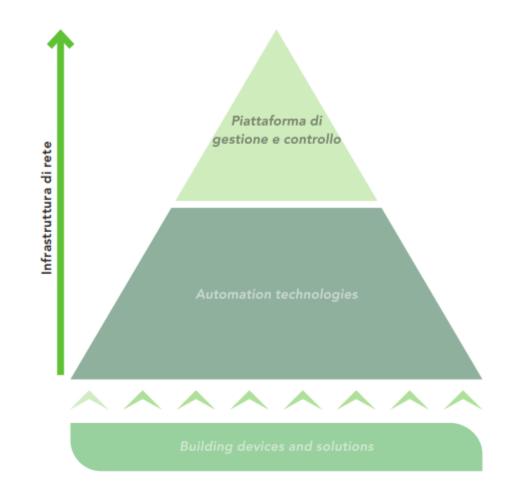


L'infrastruttura di rete rappresenta l'elemento abilitante e il pilastro fondamentale dell'architettura digitale. Essa consiste nei collegamenti che permettono la connessione tra due o più dispositivi allo scopo di poter scambiare informazioni e dati.

Le diverse tipologie di rete possono essere classificate secondo due dimensioni differenti:

- Tipologia di collegamento: che dipende dal tipo di collegamento utilizzato per installare la rete, differenziando quindi tra reti cablate (o wired), reti wireless, reti ibride oppure Powerline.
- Range di copertura: che dipende dal raggio di distanza entro il quale la rete riesce a permettere la comunicazione e la trasmissione di dati e delle informazioni. Secondo questa dimensione le tipologie di rete possono essere classificate in PAN, LAN, CAN, MAN, WAN*. Nel classificare la rete secondo il range di copertura è importante considerare che esiste un trade-off tra la distanza di copertura della rete e la velocità e la potenza della connessione.

(*) Sono state considerate solamente le configurazioni adatte al contesto del building escludendo per esempio BAN e GAN.


La **rete** è caratterizzata inoltre da:

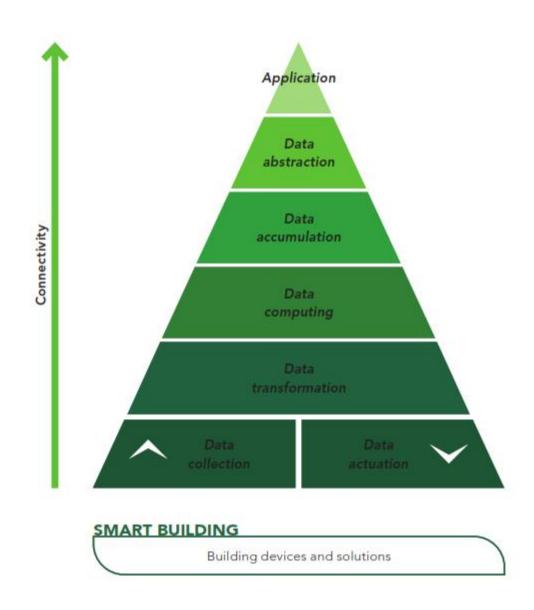
Aspetti fisici:

- Il mezzo utilizzato per permettere la comunicazione, il quale può essere un cavo di rame o la fibra ottica nel caso di un collegamento wired, oppure il campo elettromagnetico nel caso delle tecnologie wireless e cellulari.
- Il transceiver, ovvero il dispositivo che permette la trasformazione dei dati digitali in segnali elettrici, radio, ottici e viceversa.

Aspetti logici:

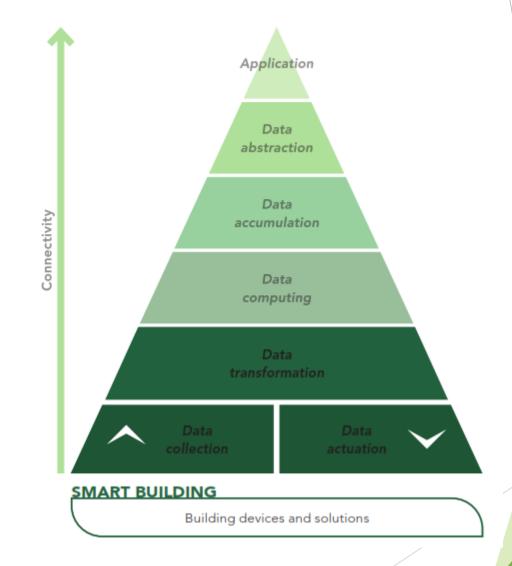
- I protocolli, che sono l'insieme di regole e procedure che rendono possibile la comunicazione tra computer, regolamentando le transazioni e dando struttura ai dati che vengono scambiati.
- La topologia, che corrisponde allo schema dei collegamenti (o configurazioni) che permettono ai dati di essere trasferiti da un punto ad un altro. Secondo questa dimensione, esistono diverse topologie: lineare, ad anello, a stella, a maglia, ad albero oppure a bus.

L'architettura digitale di uno Smart Building si articola in diversi livelli **attraverso i quali si realizzano le interazioni previste con le componenti dell'achitettura fisica dell'edificio descritta nel capitolo 1**.


- In particolare, l'architettura digitale può essere suddivisa in **sette livelli differenti sulla base delle funzioni e dei processi** che caratterizzano ciascuno dei *layer* considerati. Ad essi si associa un ottavo livello, la **connectivity**, che mette a disposizione degli altri *layer* i dati di campo e ne permette il transito.
- È importante considerare inoltre che, all'interno di questo schema, i dati fluiscono in entrambe le direzioni: nelle **azioni di mo- nitoraggio**, i dati raccolti alla base della piramide fluiscono verso i livelli più elevati, mentre nelle **azioni di controllo** il flusso
 parte dall'application layer per retroagire sui livelli inferiori.

L'architettura digitale di uno **Smart building** permette la raccolta e la lettura dei dati provenienti dal campo e consente l'erogazione dei servizi descritti nel capitolo 1 del presente report:

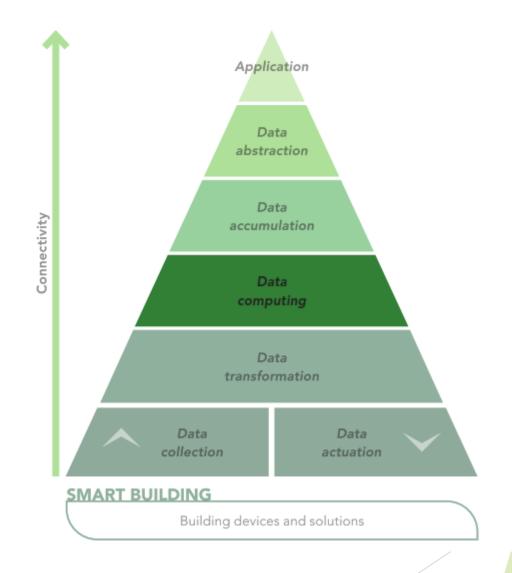
- Servizi in ambito Energy, gestione e efficientamento dell'energia all'interno del building;
- Servizi in ambito Comfort, miglioramento del comfort e delle condizioni di utilizzo del building;
- Servizi in ambito Safety, prevenzione e gestione dei rischi che possono compromettere l'incolumità degli occupanti presenti nel building;
- Servizi in ambito Security, prevenzione e gestione dei rischi che possono compromettere la sicurezza e la protezione degli asset che costituiscono il building stesso o che in esso sono ospitati;
- Servizi in ambito Health, mantenimento e miglioramento della salute degli occupanti del building.


La **struttura logica** che caratterizza l'architettura digitale di uno *Smart building* è suddivisibile in **sette livelli**, di seguito descritti:

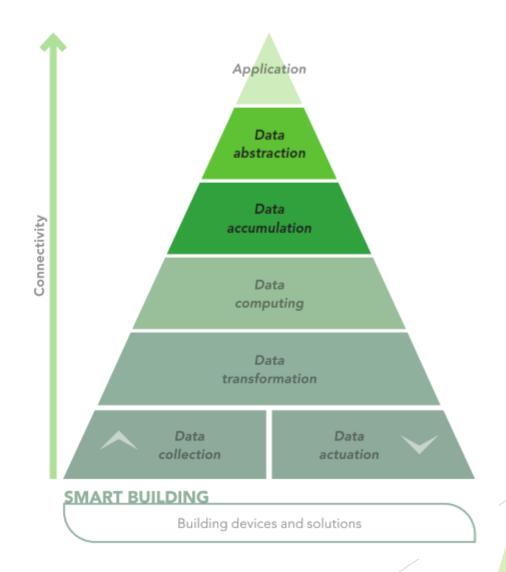
Data collection and actuation — è il livello logico in cui, sulla base delle richieste dei *layer* superiori, è possibile:

- Retroagire sulle funzioni logiche sottostanti;
- Convertire i dati digitali in corrispondenti segnali;
- Condividere efficacemente dati attraverso i mezzi di comunicazione;
- Partecipare ad una prima fase di risoluzione degli errori.

Data transformation — è il livello logico in cui avviene la trasformazione dei dati acquisiti dai *layer* sottostanti. Si realizzano le seguenti funzioni:


- Uniformare le diverse interfacce;
- Gestire e tradurre diversi protocolli di comunicazione;
- Fornire un canale di comunicazione tra la rete internet ed il campo.

Data computing — È il livello logico nel quale si realizzano l'elaborazione e l'archiviazione delle informazioni. Ciò consente di analizzare e trasformare elevati volumi di dati, tra loro eterogenei, ottenendo migliori prestazioni e risposte in tempo reale. A questo livello, i dati devono essere decodificati e filtrati per poter essere indirizzati a livelli di elaborazione più elevati.

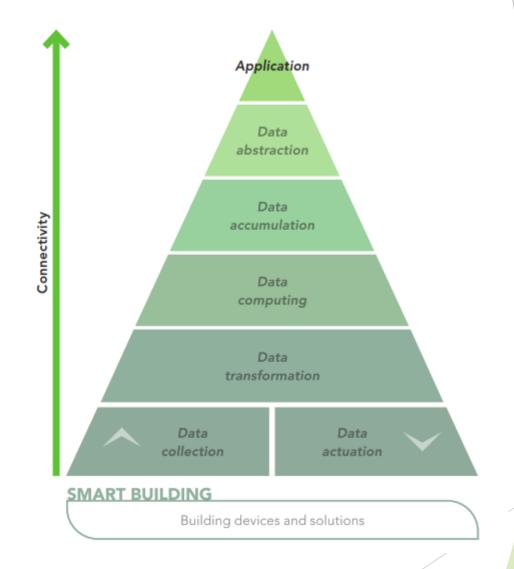

La **struttura logica** che caratterizza l'architettura digitale di uno *Smart building* è suddivisibile in **sette livelli**, di seguito descritti:

Data accumulation — In questo livello dell'architettura digitale **i dati** movimentati attraverso la rete **sono trasformati in dati statici ed organizzati** per essere utilizzati anche non simultaneamente.

L'obiettivo è quello di stoccare una grande quantità di dati diversi e di archiviarla nel modo più efficiente.

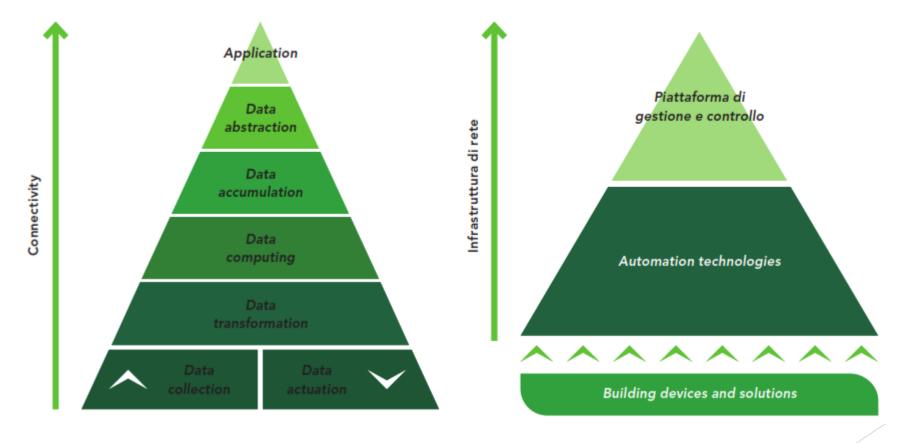
Data abstraction — In questo livello dell'architettura digitale i **dati** provenienti da diverse fonti **sono combinati, resi omogenei ed aggregati**.

Si verifica la completezza dell'informazione ad essi associata e si generano schemi per rendere accessibili grandi quantità di dati a livello applicativo.



Application— Nel livello più elevato dell'architettura digitale si realizza l'**interpretazione dei dati raccolti** e archiviati nei *layer* sottostanti. Questo *layer* si pone come **interfaccia verso gli utilizzatori** e consente, da un lato, di agire sugli strati fisici sottostanti dell'architettura e, dall'altro, di fornire analisi e risultati.

Connectivity — È il livello responsabile della **comunicazione** all'interno della struttura logica e consente l'**efficiente indirizzamento di dati**.



Esiste una corrispondenza tra l'architettura digitale dello Smart Building e le sue componenti fisiche:

- La funzione logica connettività è assicurata dalla componente fisica infrastruttura di rete;
- Le funzionalità logiche di data collection & actuation e di data transformation sono rese possibili dal layer fisico automation technology;
- Le funzioni logiche superiori a partire da data computing- sono assicurate dalla componente «Piattaforma di gestione e controllo».

INFRASTRUTTURA DI RETE |

CLASSIFICAZIONE DELLE RETI – TIPOLOGIA DI COLLEGAMENTO

Per quanto riguarda la tipologia di collegamento, si possono distinguere principalmente 4 opzioni:

- Connessioni wired che utilizzano cablaggi, ovvero l'insieme di cavi, prolunghe, prese utente, connettori, quadri e pannelli
 necessari per connettere i dispositivi di comunicazione. La connessione wired rappresenta uno dei modi più antichi per
 trasmettere informazioni e dati, risalente ai tempi in cui i messaggi venivano inviati tramite telegrafo elettrico. Tuttavia, grazie
 ai suoi numerosi vantaggi, è ancora molto diffuso e non obsoleto.
- Connessioni wireless, che hanno la caratteristica di trasmettere i dati e le informazioni senza l'ausilio di connessioni fisiche
 ma sfruttando onde radio a bassa frequenza (RF) come mezzo fisico di comunicazione. La tecnologia wireless ha avuto una
 diffusione ampia e veloce perché i vantaggi che offre sono considerevoli e ad oggi è in continua espansione soprattutto nel
 contesto delle reti domestiche intelligenti grazie alla facilità di installazione e alla flessibilità nel connettere nuovi dispositivi
 e sensori.
- Connessioni ibride, che prevedono la coesistenza di componenti di rete sia wired sia wireless per poter massimizzare i vantaggi di entrambi gli approcci. L'idea di creare dei network ibridi sta prendendo piede proprio per sfruttare l'opportunità di combinare i punti di forza della connessione wired e della connessione wireless che spesso sono complementari.
- Connessioni Powerline (o onde convogliate), che permettono il trasferimento di voce o di dati utilizzando la rete di alimentazione elettrica come mezzo di trasmissione. Si realizzano sovrapponendo un segnale a frequenza elevata al trasporto di corrente elettrica, che invece è a bassa frequenza.

Tipicamente la **connessione** wired rappresenta un elemento distinto, mentre alcuni protocolli di connessione wireless possono essere embedded nelle soluzioni installate (sia all'interno dei building devices and solutions sia nelle automation technologies, in modo che possano mutuamente comunicare).

Sulla base delle tecnologie ad oggi esistenti per la trasmissione delle informazioni tramite **rete cablata** (wired) si segnalano le seguenti soluzioni:

- Cavo di rame: il rame è stato a lungo il materiale preferito nella comunicazione a breve e lunga distanza, con una costante
 crescita negli ultimi 50 anni. Il cavo di rame prevede due principali alternative: il cavo coassiale (sottile o spesso) e il doppino.
 Nonostante gli sviluppi tecnologici riguardo la trasmissione dei dati, il cavo di rame non è diventato obsoleto ma si presenta
 sotto varie forme in molte delle nuove tecnologie (ADSL, HDSL, eccetera).
- Fibra ottica: la trasmissione dei dati avviene tramite filamenti di vetro. L'evoluzione delle tecnologie di accesso fisso è guidata da una progressiva introduzione della fibra ottica verso gli utenti; tale obiettivo verrà gradualmente raggiunto valorizzando
 il più possibile l'attuale rete di distribuzione in rame. Si distinguono diversi tipi di connessione in fibra:
 - FTTH (Fiber To The Home);
 - FTTE (Fiber To The Exchange);
 - FTTCab (Fiber To The Cabinet);
 - FTTdP (Fiber To The distribution Point);
 - FTTN (Fiber To The Node).
- Soluzioni ibride fibra/rame: in ottica di garantire la migliore connettività possibile, la Commissione Europea considera queste reti sub-ottimali rispetto ad una rete di sola fibra soprattutto per due motivi:
 - Una capacità inferiore nel raggiungere per upstream e downstream una velocità dell'ordine del Gigabit;
 - Un elevato numero di nodi attivi che vengono richiesti sulla rete per la conversione ottico elettrica.

BOX 1: L'INFRASTRUTTURA DI RETE DI UNO SMART BUILDING |

STORICO RETI AD ACCESSO FISSO

Con riferimento all'introduzione nel mercato della fibra ottica, si riportano di seguito i principali **step evolutivi** che ci sono stati e quelli previsti per il **futuro**:

- L'architettura **FTTE** è stata adottata nella seconda metà degli anni **'90**. Le lunghe tratte di rete in rame e lo stato della tecnologia tuttavia non consentivano di raggiungere le prestazioni richieste dal mercato.
- Le reti FTTH sono state introdotte nei primi anni 2000. In questo periodo le implementazioni sono state limitate sul territorio dati gli elevati costi di realizzazione, essendo queste rivolte ad utenze con particolari esigenze.
- Parallelamente alle reti FTTH, a partire dal 2010 circa, lo sviluppo della tecnologia VDSL (e le sue evoluzioni) ha consentito
 un'evoluzione architetturale con l'installazione dell'elettronica a livello di armadio stradale. L'architettura FTTCab prevede
 infatti di raggiungere un'unità remota ONU (Optical Network Unit) con un collegamento in fibra ottica dedicato in grado
 di portare fino a 1 Gbit/s simmetrico. La tratta in rame da coprire in questo caso è solo quella della rete di distribuzione secondaria, a valle dell'armadio stradale, detto anche riparti-linea, e le velocità raggiungibili crescono in modo significativo,
 consentendo di avvicinarsi ai target imposti dall'agenda digitale Europea.
- Un' architettura alternativa al cablaggio in fibra dell'edificio, ancora in una fase di studio, è quella FTTdP (Fibre To The distribution Point): questa è caratterizzata dall'adozione di un'unità attiva nelle immediate vicinanze dell'utente (es. all'ultimo distributore della rete in rame, alla base di uno o più edifici, sul marciapiede o in un pozzetto stradale). L'ultima tratta della rete in rame sarà qui molto breve (50-150m) e potrà pertanto essere adottata un'innovativa tecnologia trasmissiva in rame in fase di sviluppo (G. fast), ottimizzata per ottenere alte velocità di connessione su queste brevi distanze.

TIPOLOGIA DI COLLEGAMENTO |

RETI WIRED - PROTOCOLLI DI COMUNICAZIONE

Le connessioni **wired** tipicamente **vengono adottate in contesti residenziali, e talune volte nel terziario**, poiché l'estensione ridotta delle aree e i relativi requisiti di comunicazione si addicono a questo tipo di connessione. I più comuni **protocolli di comunicazione** sono:

- **Ethernet**: risalente agli **anni '70**, è un protocollo di comunicazione solido e ampiamente testato. Il suo utilizzo è molto efficiente negli edifici perché la trasmissione delle informazioni avviene fluidamente, indipendentemente dai piani e dalla presenza di ostacoli. **Utilizzato sia in ambito residenziale sia terziario**.
- Standard X10: protocollo di derivazione industriale che viene ampiamente adottato nell'ambito della domotica. Molto popolare perché ben consolidato (risale al 1975), economico e utilizzabile in moltissime applicazioni. Utilizzato prevalentemente in ambito residenziale.
- Universal Powerline Bus (UPB): evoluzione dello standard X10, nato nel '99 e che viene migliorato nell'affidabilità e nella velocità di trasmissione. Utilizzato prevalentemente in ambito residenziale.
- INSTEON: tecnologia ibrida piuttosto nuova che utilizza sia la linea elettrica che la comunicazione RF per controllare a distanza i dispositivi in una casa intelligente. Poiché utilizza una topologia mesh, non richiede un hub centrale e tutti i dispositivi INSTEON sono in grado di comunicare tra loro e ripetere i messaggi per estendere l'area di copertura. I vantaggi principali sono l'affidabilità, la facilità d'uso, la compatibilità, la propagazione veloce dei messaggi e un gran numero di dispositivi tra cui scegliere. Il principale svantaggio riguarda la lentezza nella gestione dei dati. Ciò rende la tecnologia un buon strumento per il controllo dei dispositivi, ma non altrettanto quando deve interfacciarsi con sensori che generano una grande quantità di dati.
- MoCA: Multimedia over Coax è una tecnologia che utilizza i cavi coassiali presenti nella casa per garantire la consegna dei
 contenuti. È un protocollo di comunicazione affidabile. Viene anche utilizzato con i ripetitori Wi-Fi per aumentarne la copertura senza perdita di dati.

- Konnex (KNX): protocollo di comunicazione aperto ed indipendente dalla piattaforma che costituisce il primo standard
 mondiale per la Home and Building automation. Consente la gestione automatizzata e decentralizzata dei dati provenienti
 dai devices di varia complessità e natura. Utilizzato sia in ambito residenziale sia terziario.
- **BACnet**: molto diffuso nell'automazione degli edifici e delle reti di controllo, favorisce l'interoperabilità fra gli elementi dei sistemi per il **Building Management System** (BMS). BACnet è un protocollo di interscambio aperto, neutrale, non proprietario e senza diritti di utilizzo. **Utilizzato prevalentemente in ambito terziario**.
- Meter Bus: M-Bus è impiegato per leggere i dati di consumo dell'energia dai contatori dell'elettricità, del calore, del gas, dell'acqua e dai vari sensori e attuatori anche di diversi produttori. Come sistema efficiente per misurare i dati di consumo, M-Bus viene spesso utilizzato nell'area dei sistemi di controllo degli edifici.

I principali punti di forza e di debolezza di una rete di comunicazione wired sono:

VANTAGGI

- Sicurezza: manomissioni e intrusioni dall'esterno sono estremamente difficili.
- Distanza: le trasmissioni possono avvenire a distanze molto più elevate rispetto a quelle dei più comuni protocolli wireless.
- Semplicità: la connessione del dispositivo al network è semplice e immediata.
- Affidabilità: la trasmissione attraverso i cavi è solida e costante nel tempo.
- Velocità: la velocità di trasmissione teorica può arrivare fino a 100 Gbps.

SVANTAGGI

- Mobilità: i dispositivi non possono essere spostati in maniera semplice.
- Espansione: l'estensione della copertura del network non è immediata e può richiedere l'inserimento di ulteriori connessioni fisiche.
- Costo: le connessioni tramite cavi sono più costose rispetto alle reti wireless poiché vanno aggiunti i costi di cavi e manodopera.
- Complessità: l'intervento richiede l'intervento di personale specializzato.
- Potenza: le reti wired necessitano di essere collegate ad una fonte di energia e nel caso di perdita di tensione potrebbero non essere in grado di funzionare mediante il supporto di una batteria.

Le **connessioni wireless risultano più adatte per edifici di grandi dimensioni** (terziario di grandi dimensioni e industriale). I più comuni protocolli di comunicazione *wireless* sono:

- Wi-Fi: lo standard Wi-Fi è adeguato per la trasmissione di file ma richiede molta potenza, pertanto risulta più adatto in ambito residenziale.
- Bluetooth: protocollo di comunicazione a corto raggio che si adatta molto bene al collegamento di sensori. Utilizzato sia in ambito residenziale che terziario.
- Bluetooth Low Energy (BLE): evoluzione del Bluetooth, che comporta scambi di dati continui richiedendo un notevole consumo di batteria. Il BLE viene attivato solo quando necessario e mantiene la modalità sleep nel tempo restante, allungando la vita della batteria. Utilizzato sia in ambito residenziale sia terziario.
- ZigBee: protocollo che viene ampiamente utilizzato in ambito di controllo e automazione degli edifici. Caratterizzato da bassi
 consumi, elevata sicurezza e scalabilità, soffre di una ridotta velocità di trasmissione e raggio d'azione. Utilizzato prevalentemente in ambito terziario.
- **Z-wave**: progettato appositamente per applicazioni domotiche, utilizza una banda di frequenze (900 MHz) che permette di evitare interferenze con sistemi *Wi-Fi* e *Bluetooth* (2.4 GHz). Tale banda **permette di attraversare le pareti degli edifici con maggiore facilità rispetto al segnale Wi-Fi**, allungandone il raggio d'azione. **Utilizzato sia in ambito residenziale sia terziario**.
- **6LowPAN**: è uno standard open-source e gratuito per costruire PAN a bassa potenza su IPv6. È basato sullo standard IEEE 802.15.4, il che significa che è simile a ZigBee. La tecnologia supporta velocità di dati di 20-250 kbps a seconda della frequenza, con una portata da 10 a 100 m.

La trasmissione di informazioni mediante **onde convogliate (PLC o Powerline communication)** è una tecnologia consolidata ma ancora poco diffusa. Consiste nell' «iniettare» segnali ad alta frequenza (ovvero a frequenze diverse da quelle della rete elettrica che tipicamente sono di 50-60Hz) su un **mezzo di trasporto costituito dalla rete elettrica** sfruttando così il cablaggio elettrico esistente. L'uso di questo mezzo di comunicazione è particolarmente vantaggioso per tutti quei dispositivi che sono, per loro natura, già connessi alla rete elettrica.

La **powerline** può essere sfruttata per portare la connessione a banda larga a tutte quelle utenze che sono interposte alla rete **wireless** da diversi ostacoli. In questi casi, infatti, è vantaggioso collegare al ripetitore **wireless** più vicino un "convertitore" che invii il segnale su cavo elettrico.

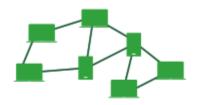
VANTAGGI

Semplicità: la configurazione della connessione *powerline* è semplice e veloce

Flessibilità: non c'è necessità di creare ulteriori impianti cablati negli ambienti di interesse ed è possibile anche estendere la rete wireless presente tramite gli adattatori powerline.

SVANTAGGI

 Interferenze: le interferenze provenienti dall'esterno possono peggiorare la qualità e l'affidabilità delle comunicazioni.
 Inoltre, gli adattatori powerline necessitano di essere collegati direttamente alla presa della corrente e non a prese multiple per evitare interferenze elevate.


La distinzione delle reti basata sul range (o raggio) di copertura identifica 6 principali tipologie:

- PAN (Personal Area Network) Con questo termine si indica una rete con raggio pari alle dimensioni di una stanza (pochi
 metri). La rete PAN può utilizzare un collegamento via cavo, tramite cavi USB o Firewire, oppure wireless (WPAN) tramite
 il Bluetooth.
- LAN (Local Area Network) Con questo termine si indica una rete che ricopre l'area occupata da un edificio. Una rete LAN, quindi, può collegare dispositivi per una distanza di 10 m (stanza), 100 m (un edificio) o 1 km (campus). Una connessione LAN può utilizzare i cavi (dunque wired) ed in questo caso si parla di rete Ethernet, oppure sfruttare le onde radio ed in questo caso parliamo di WLAN (wireless LAN). Nel caso delle WLAN si utilizza soprattutto il Wi-Fi.
- CAN (Campus Area Network) Con questo termine si indica una rete in cui più reti locali (LAN) sono interconnesse in un'area geografica limitata (ad esempio un campus universitario, da cui il nome).
- MAN (Metropolitan Area Network) Con questo termine intendiamo le reti che ricoprono aree metropolitane da 10 a 100 km, che hanno le dimensioni di una città. Possono essere wired o wireless. Nel caso di reti wireless si parla di WMAN e lo standard più utilizzato è il WiMAX.
- WAN (Wide Area Network) Con questo termine si intendono le reti che possono ricoprire una nazione da circa 1000 km, fino
 ad un continente da circa 5000 km. Le reti WAN coprono dunque lunghe distanze geografiche e le connessioni possono avvenire tramite reti pubbliche o anche stazioni satellitari. Le reti WAN sono composte da tante sotto-reti LAN interconnesse
 attraverso i router.

RETE A MAGLIA (O MESH)

Tutti i nodi sono collegati tra loro e ciascuno di essi riesce a raggiungerne un altro attraverso un solo passaggio.

VANTAGGI

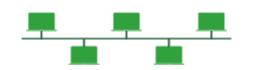
- Massima velocità
- Massima tolleranza per eventuali errori: esiste sempre un percorso alternativo per arrivare ad un determinato nodo

SVANTAGGI

- Complessa da realizzare ed espandere per l'alto numero di collegamenti
- Costo piuttosto elevato sia per la realizzazione sia per la gestione

RETE AD ALBERO

Il nodo padre è collegato ai nodi figli (o foglie) che possono essere a loro volta padri, creando una nuova struttura gerarchica. Ogni nodo si raggiunge attraverso un solo percorso.


VANTAGGI

- Costi contenuti
- Facile espandibilità attraverso i nodi figli che possono diventare a loro volta nodi padre

SVANTAGGI

- Non c'è tolleranza ai guasti
- Rischio di blocco totale se si guasta il nodo radice principale.

RETE A BUS

Nella topologia a bus, tutti i nodi sono collegati tra di loro per mezzo di un unico ramo condiviso

VANTAGGI

- Scalabilità: l'aggiunta di un nodo non comporta l'aggiunta di collegamenti né l'interruzione dei collegamenti esistenti
- Robustezza: la rottura del bus porta ad avere comunque un partizionamento della rete in due topologie a bus

SVANTAGGI

- Rischio di sovraccarico del nodo padre
- Possibile blocco della rete se il nodo centrale smette di funzionare

RETE LINEARE

Ogni nodo è collegato con un ramo al nodo adiacente successivo e con l'altro ramo al nodo adiacente che lo precede (eccetto il primo e l'ultimo nodo della rete)

VANTAGGI

- Facilità di realizzazione
- Sistema semplice da costruire e sufficientemente veloce

SVANTAGGI

 Poco affidabile: se un nodo si rompe la rete viene divisa in due e i messaggi non posso più viaggiare

RETE AD ANELLO

Ogni nodo è collegato con un ramo al nodo adiacente precedente e con l'altro ramo al nodo adiacente successivo

VANTAGGI

- Elevata estendibilità della rete, garantita dal potenziamento del segnale da parte di ogni nodo
- Facilità di realizzazione
- Sistema semplice da costruire e sufficientemente veloce

SVANTAGGI

- Bassa tolleranza ai guasti
- Scarsa diffusione
- · Difficoltà di espansione

RETE LINEARE

Il nodo centrale gestisce le funzionalità della rete: ogni nodo figlio deve inviare il messaggio al nodo centrale che provvederà a smistarlo.

VANTAGGI

- Scalabilità: l'aggiunta di un nodo non comporta l'aggiunta di collegamenti né l'interruzione dei collegamenti esistenti
- Robustezza: la rottura del bus porta ad avere comunque un partizionamento della rete in due topologie a bus

SVANTAGGI

 Sicurezza: richiede di utilizzare meccanismi di controllo dell'accesso che evitino le collisioni o le interferenze tra i nodi

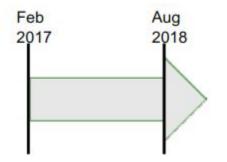
Classificazione energetica: SRI Smart Readiness Indicator

Smart Readiness Indicator

Indicatore d'intelligenza che misura la capacità degli edifici di migliorare la propria operatività e interazione con la rete, adattando il consumo energetico alle esigenze reali degli abitanti

Obiettivi

- Aumentare l'adozione di tecnologie intelligenti ed efficienti dal punto di vista energetico nel settore dell'edilizia;
- Fornire informazioni affidabili e un vocabolario comune a tutte le parti interessate;
- Fornire un facile e comprensibile metodo di valutazione.



Lo Studio per stabilire una metodologia per calcolarlo dell'SRI è stato commissionato e supervisionato direttamente dalla Commissione Europea DG Energia ad un consorzio di ricerca

Website:

https://smartreadinessindicator.eu

1st technical support study

Principi che hanno guidato lo sviluppo della metodologia SRI

- 1) La capacità di mantenere le prestazioni di efficienza energetica e il funzionamento dell'edificio attraverso l'adattamento del consumo energetico
- 2) La capacità di adattare la propria modalità operativa in risposta alle esigenze dell'occupante, attenzione alla disponibilità e facilità d'uso, mantenendo condizioni climatiche interne sane e capacità di riferire sul consumo di energia.
- 3) La flessibilità della domanda di elettricità complessiva di un edificio, compresa la sua capacità di consentire la partecipazione alla risposta della domanda attiva e passiva nonché implicita ed esplicita, in relazione alla rete, ad esempio attraverso la flessibilità e capacità di trasferimento del carico.

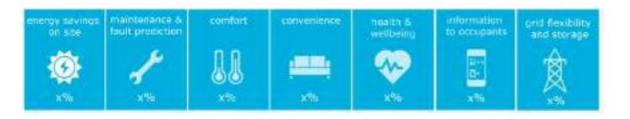
1) Identificazione dei Servizi Presenti

2) Valutazione dei Livelli di funzionalità

3) Calcolo del grado di Intelligenza

I SERVIZI (DOMAINS)

- 1) Riscaldamento
- 2) Raffrescamento
- 3) Acqua calda sanitaria
- 4) Sistema di ventilazione
- 5) Illuminazione
- 6) Copertura dinamica edificio
- 7) Elettricità
- 8) Sistemi di ricarica veicoli elettrici
- 9) Controllo e gestione



CRITERI DI IMPATTO (IMPACT CRITERIA)

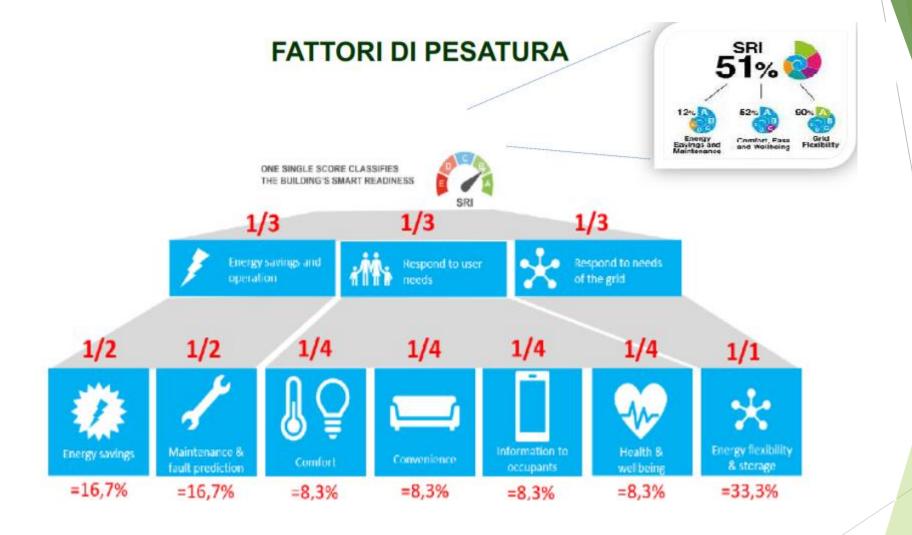
- 1) Efficienza energetica
- 2) Manutenzione e Prevenzione
- 3) Comfort
- 4) Convenienza
- 5) Salute e benessere
- 6) Accesso alle informazioni
- 7) Flessibilità per la rete

LIVELLI DI FUNZIONALITA' E CRITERI DI IMPATTO

code	service	Ø1						
Heating-1a	Heat emission control		Service group:	Heat control	demand side			
Functionality levels		IMPACTS						
		Energy savings on site	Flexibility for the grid and storage	Comfort	Convenience	Health & wellbeing	maintenance & fault prediction	information to occupants
level 0	No automatic control	0	0	0	0	0	0	0
level 1	Central automatic control (e.g. central thermostat)	1	0	1	1	1	0	0
level 2	Individual room control (e.g. thermostatic valves, or electronic controller)	2	0	2	2	2	0	0
level 3	Individual room control with communication between controllers and to BACS	2	0	2	3	2	1	0
level 4	Individual room control with communication and occupancy detection	3	0	2	3	2	1	0

code	service	Ø1							
Heating-1b	Emission control for TABS (heating mode)		Service group:	Heat control	- demand side				
Functionality levels		IMPACTS							
		Energy savings on site	Flexibility for the grid and storage	Comfort	Convenience	Health & wellbeing	maintenance & fault prediction	information to occupants	
level 0	No automatic control	0	0	0	0	0	0	0	
level 1	Central automatic control	1	0	1	1	1	0	0	
level 2	Advanced central automatic control	1	0	1	2	2	0	0	
level 3	Advanced central automatic control with intermittent operation and/or room temperature feedback control	2	0	2	3	2	1	1	

OHE SINGLE SCORE CLASSIFIES THE BUILDING'S SMART READMENS



	Energy savings	Maintenance & fault prediction	Comfort	Convenience	Health & wellbeing	Information to occupants	Energy flexibility & storage
Heating			16%	10%	20%	11,4%	
Domestic hot water				10%		11,4%	
Cooling			16%	10%	20%	11,4%	
Controlled ventilation			16%	10%	20%	11,4%	
Lighting			16%	10%	20%		
Electricity				10%		11,4%	
Dynamic Envelope	5%	5%	16%	10%	20%	11,4%	
EV Charging				10%		11,4%	5%
Monitoring & Control	20%	20%	20%	20%		20%	20%

STEP 1: FIXED WEIGHTS STEP 2: EQUAL WEIGHTS STEP 3: ENERGY BALANCE WEIGHTS (depend on climate zone)

PROCEDURA DI VALUTAZIONE

A Metodo Semplificato

Approccio con lista di controllo con un elenco di servizi limitato e semplificato

Autovalutazione on-line effettuata dall'utente finale (nessuna certificazione) o Ispezione in loco da parte di un ente/esperto qualificato di terza parte (Certificazione formale)

Fino a 1 ora

Edifici residenziali e piccoli edifici non residenziali (superficie netta calpestabile <500 m²)

Valutazione Esperta

Approccio con lista di di controllo che copre il catalogo completo dei servizi intelligenti

Autovalutazione on-line effettuata da un tecnico competente (nessuna certificazione) o Ispezione in loco da parte di un ente/esperto qualificato di terza parte (Certificazione formale)

Da 4 ore fino ad un giorno (a seconda della complessità)

Edifici non residenziali (ed Edifici residenziali se si desidera)

C Valutazione In-Use

Dati Misurati/contabilizzati

Valutazione «in uso», dati misurati/contabilizzati in seguito alla messa in servizio

Dati raccolti in un lungo periodo (es: 1 anno)

Edifici residenziali ed Edifici non residenziali (Non durante la fase di progettazione)

La parte 8 della Norma CEI 64-8

La Parte 8 della Norma CEI 64-8 contiene prescrizioni, misure e raccomandazioni supplementari per il progetto, l'installazione, il funzionamento e la verifica di tutti gli impianti elettrici di bassa tensione trattati dalla Norma CEI 64-8 (Capitolo 11), compresi la produzione locale e l'accumulo dell'energia per ottimizzare l'utilizzo efficiente globale dell'elettricità. la Parte 8 contiene le prescrizioni, le raccomandazioni e i metodi utili a progettare e valutare l'efficienza dell'energia elettrica (EEE) di un impianto elettrico di bassa tensione fornendo una classificazione secondo i seguenti livelli:

-dal livello di efficienza minore a quello maggiore-

EEO

EE1

EE2

EE3

EE4

EE5

Dotazioni degli impianti

Il miglioramento dell'efficienza energetica corrisponde

- --consumo di energia in kWh,
- --dal prezzo dell'elettricità corrisposto dall'utente
- --dalla tecnologia e dell'impatto ambientale;

Relativamente alle esigenze relative ai carichi, occorre prendere in considerazioni la tipologia di apparecchi utilizzatori, la priorità dei carichi

Progettando una procedura per il distacco dei carichi, di informazioni sul controllo dell'impianto elettrico, le eventuale modalità software che permetta il controllo delle funzioni attraverso pc- tablet-smartphone.

La chiave per valutare l'efficienza di un edificio è la misurazione di alcuni parametri quali presenza di persone; temperatura-umidità ; qualità dell'aria; illuminazione diurna; durata di funzionamento e costo dell'energia.

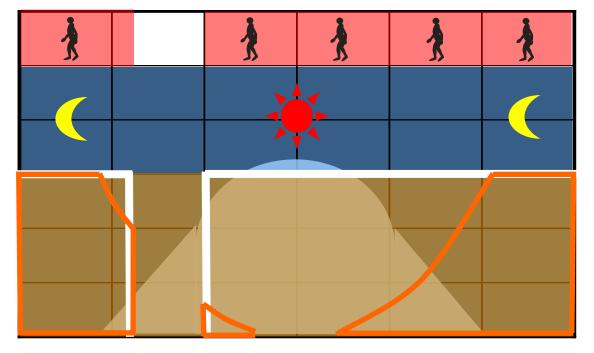
Illuminazione (EN 15193)

E = Pn t Fc (kWh)

Pn Esprime la potenza nominale dell'impianto d'illuminazione

Fc Dipende dal sovradimensionamento della potenza dell'impianto

Fo Dipende dal grado di occupazione dell'area illuminata


Fd Dipende da come il sistema di controllo sfrutta la luce naturale

Td Esprime il numero di ore annue in cui l'impianto lavora in presenza di luce naturale

Tn Esprime il numero di ore annue in cui l'impianto lavora in assenza di luce naturale Area Esprime la superficie dell'area illuminata.

Quando l'area è occupata in modo discontinuo ed è presente un sistema di controllo in grado di gestire in modo automatico la presenza si ottengono valori di Fo tanto migliori quanto minori di 1. Questo parametro determina il tempo in cui gli apparecchi d'illuminazione rimangono spenti, con conseguente riduzione dei consumi ed aumento della durata di vita delle sorgenti, il che determina quindi anche un risparmio nei costi di manutenzione e relamping.

occupazione

ll. Artificiale

Naturale

Richiamando quanto definito dalla Norma CEI EN 61557-12 i dispositivi per la misura ed il monitoraggio (PMD) sono classificati in base alle funzioni minime richieste:

Efficienza energetica: analisi dell'utilizzo dell'energia ai fini della valutazione dell'efficienza energetica;

Monitoraggio di base della potenza: controllo della potenza ai fini del monitoraggio e del comando della distribuzione dell'energia elettrica all'interno dell'impianto;

Controllo avanzato della potenza e prestazioni della rete: monitoraggio della potenza e delle prestazioni di rete.

La realizzazione delle misure di efficienza devono tenere conto dell'efficienza degli apparecchi utilizzatori e dell'impianto elettrico, della messa in funzione dei sistemi di monitoraggio e dell'installazione di sorgenti di alimentazione locali.

Le misure devono essere analizzate al fine di intraprendere azione dirette (il miglioramento dell'efficienza energetica) e azioni programmate (come il mantenimento di soluzioni esistenti e la realizzazione di nuove soluzioni).

Valutazione dell'efficienza energetica

Il metodo di valutazione dell'efficienza energetica di un impianto elettrico basata sui principali parametri che influenzano la sua efficienza è contenuto nell'Allegato B della Nuova Norma CEI 64-8.

In particolare, la classe di efficienza di un impianto elettrico è determinata come somma dei parametri differenziati secondo la tipologia di ambiente:,

industriale (B.3.2) ○ *residenziale (B.3.3)*.

Il punteggio totale ottenuto sarà confrontato al fine di definire la classe di efficienza dell'impianto elettrico. Ad ogni parametro *non valutato* dovrà essere assegnato un punteggio pari a 0 (zero).

Valutazione dell'efficienza energetica

Nel caso di un'abitazione i parametri di misurazione dell'efficienza energetica si determinano in base al consumo di energia

II01: punteggio da 0 a 20 in base alla percentuale *K1* del consumo annuale dei carichi, il cui valore è misurato ante/post, rispetto al consumo energetico annuo di energia dell'impianto La gestione dell'energia -sommatoria parametri EM01 relativo alle zone all'interno dell'impianto,

EM03 relativo alla valutazione della potenza nominale dei carichi prioritari,

EM04 relativo alle maglie all'interno dell'impianto,

EM05 relativo alla misura del numero di utilizzi

EM08 relativo all'implementazione del comando HVAC,

EM09 relativo all'implementazione del comando automatico dell'illuminazione,.

Valutazione dell'efficienza energetica

Costituiscono un bonus, la produzione di energie rinnovabili prodotta da impianti fotovoltaici, turbine eoliche, energia idroelettrica, geotermica o da biomasse (*Parametro BS01*) e la capacità installata di accumulo dell'energia elettrica (*Parametro BS02*). Al rapporto tra la produzione on site da energie rinnovabili ed il consumo totale di energia dell'impianto (*RPRE*) sono assegnati:


- 0 punti se RPRE è minore del 5%;
- 2 punti se RPRE è maggiore o uguale al 5% e inferiore al 30%;
- 3 punti se RPRE è maggiore o uguale al 30% e inferiore al 60%;
- 4 punti se RPRE è maggiore o uguale al 60% e inferiore all'80%;
- 5 punti se RPRE è maggiore o uguale all'80%.

Valutazione dell'efficienza energetica

Al rapporto tra *la capacità installata di accumulo dell'energia elettrica* ed il *consumo medio giornaliero di energia* (consumo totale annuo di energia elettrica del carico dell'impianto diviso per 365) dell'impianto (*RPES*) sono assegnati:

- 1 punti se RPES è maggiore o uguale al 5% e inferiore al 15%;
- 2 punti se RPES è maggiore o uguale al 15% e inferiore al 30%;
- 3 punti se RPES è maggiore o uguale al 30%.

Valutazione dell'efficienza energetica

Parametri di misurazione dell'efficienza energetica nelle abitazioni:

In un ambiente residenziale, pertanto, se il punteggio totale è:

- Compreso fra 0 e 14 punti: Classe di efficienza dell'impianto elettrico è EE00;
- Compreso fra 15 e 30 punti: Classe di efficienza dell'impianto elettrico è EE01;
- Compreso fra 31 e 49 punti: Classe di efficienza dell'impianto elettrico è EE02;
- Compreso fra 50 e 69 punti: Classe di efficienza dell'impianto elettrico è EE03;
- Compreso fra 70 e 89 punti: Classe di efficienza dell'impianto elettrico è EE04;
- Maggiore di 90 punti: Classe di efficienza dell'impianto elettrico è EE05...

IL LIVELLO DI MATURITÀ TECNOLOGICA DEGLI SMART BUILDING IN ITALIA

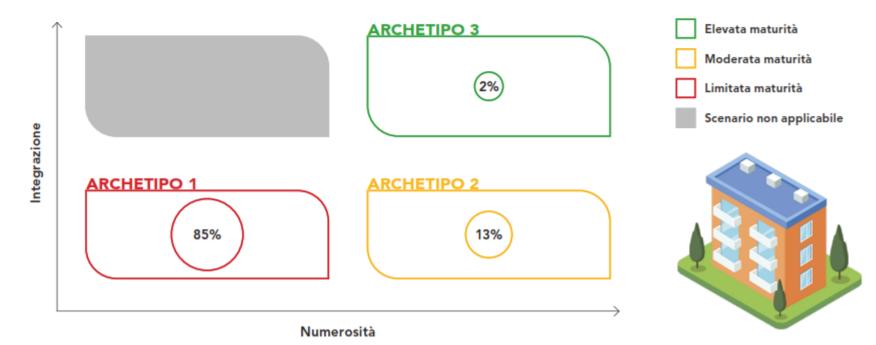
La costruzione degli archetipi sarà basata su due dimensioni:

- numerosità dei device connessi alla piattaforma o degli input da essa elaborati;
- livello di integrazione dei servizi.

Numerosità

Elevata maturità

Moderata maturità

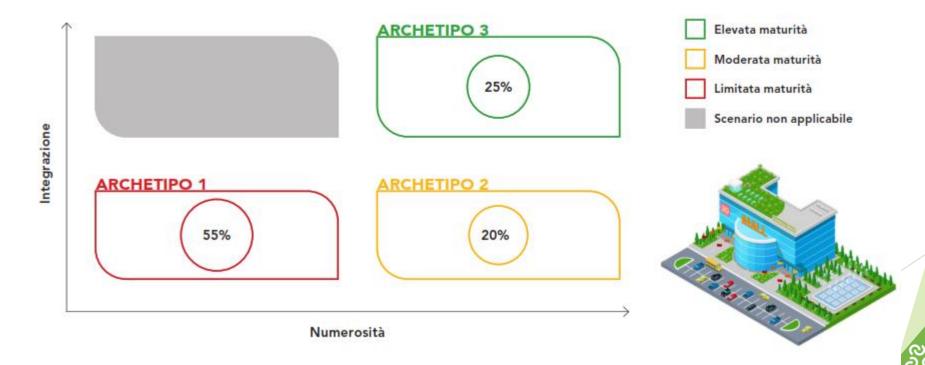

Limitata maturità

Scenario non applicabile

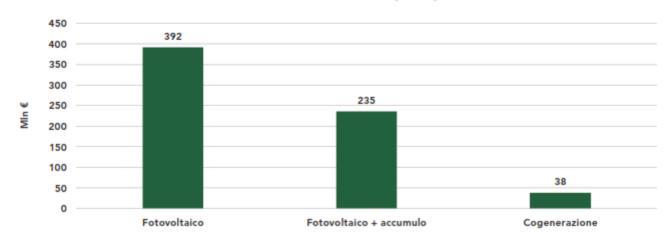
IL LIVELLO DI MATURITÀ TECNOLOGICA DEGLI SMART BUILDING IN ITALIA

I risultati delle **interviste** condotte con operatori del settore hanno permesso di effettuare delle **stime riguardo la diffusione dei tre diversi archetipi nei building residenziali.**

Come mostrato nel grafico, la configurazione largamente più diffusa risulta essere quella relativa all'Archetipo 1, con l'Archetipo 3 che occupa una porzione di mercato ancora irrisoria.



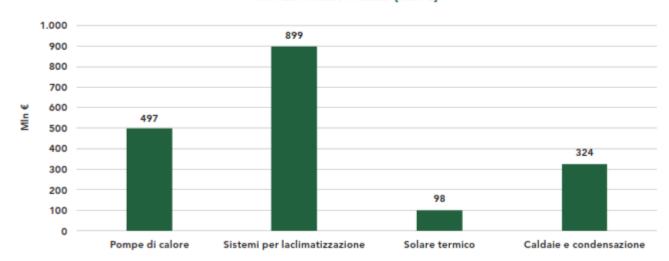
IL LIVELLO DI MATURITÀ TECNOLOGICA DEGLI SMART BUILDING IN ITALIA


Allo stesso modo, i risultati delle **interviste** condotte con gli operatori del settore hanno permesso di effettuare delle **stime** riguardo la **diffusione dei tre diversi archetipi nei building del settore terziario**.

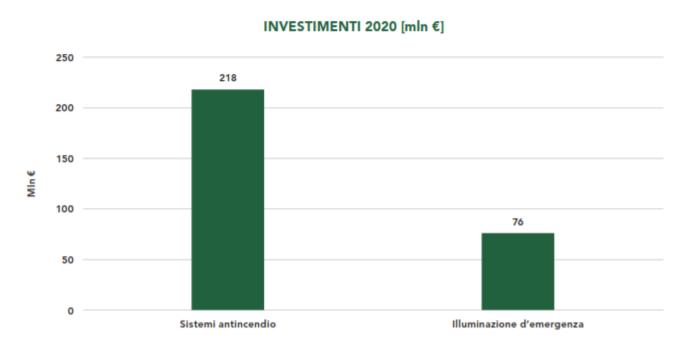
In questo settore, la diffusione dei tre archetipi risulta essere più **omogenea**, con l'**Archetipo 1** che è ancora contraddistinto da un livello di diffusione superiore rispetto agli altri, seppur ridotto rispetto al suo corrispettivo nel settore residenziale. Da sottolineare anche come l'**Archetipo 3** sia più rilevante in questo settore, andando a superare la diffusione dell'**Archetipo 2**.

Il valore degli investimenti riferiti a tecnologie di generazione di energia elettrica applicate agli edifici in Italia, nel 2020, è stato di circa 665 mln € (-3% rispetto al 2019). Di questi, quasi il 94% deriva da investimenti in impianti fotovoltaici (sono considerati gli impianti installati in modalità stand-alone nei settori residenziale e terziario e quelli accoppiati a sistemi di accumulo). Come previsto, gli investimenti in impianti di cogenerazione negli edifici rimangono ancora marginali, in quanto la loro diffusione in ambito residenziale è ostacolata dalla forte imprevedibilità della domanda e dalla ridotta taglia dell'utenza che non permette l'adozione di queste tecnologie.

Il valore complessivo degli investimenti in impianti fotovoltaici (stand-alone + sistemi di accumulo) è rimasto invece piuttosto stabile rispetto a quello del 2019 (-2%), in quanto la riduzione degli investimenti negli impianti installati in modalità stand-alone è stata compensata da un aumento degli stessi negli impianti accoppiati a sistemi di accumulo (SDA), cresciuti del 21% rispetto al 2019.



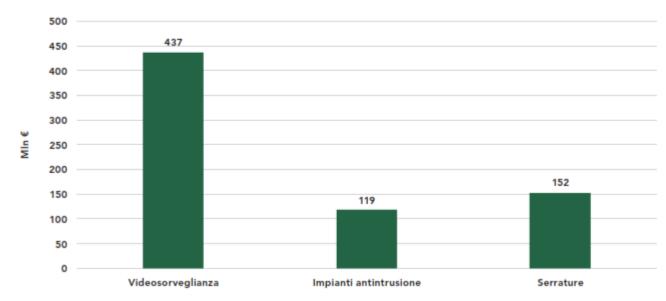
Il valore degli investimenti riferiti alle tecnologie di generazione efficiente di energia termica nel comparto degli edifici nel 2020 è stato di circa 1,8 mld €. Di questi, gli investimenti più consistenti riguardano i sistemi di climatizzazione (o HVAC) per la climatizzazione ambientale (49%) e le pompe di calore, che rappresentano il 27% del totale.


Il comparto dei sistemi di **riscaldamento e raffrescamento** ha subìto un calo complessivo del **-8%**, mentre la decrescita percentuale maggiore rispetto al 2019 è stata registrata dalle caldaie a condensazione, i cui volumi di investimento sono **diminuiti del 15%**.

In linea con il trend degli anni precedenti, si è registrata una **decrescita delle installazioni di nuovi collettori solari termici**, che ha determinato un'importante contrazione del volume di investimenti pari al **34%** rispetto al 2019.

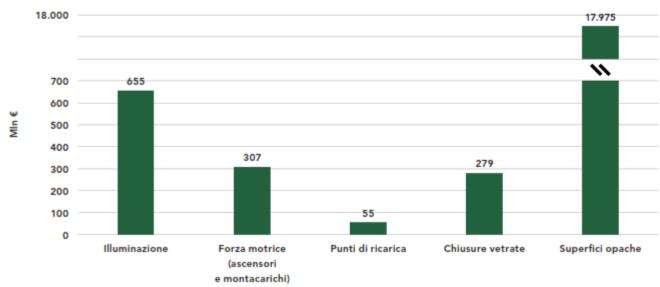
Il valore del mercato italiano legato alle tecnologie per la sicurezza delle persone (safety) negli edifici è stimato ammontare nel 2020 a circa 294 mln €. Di questi, circa tre quarti (218 mln €) sono relativi ai sistemi antincendio, mentre la restante parte rappresenta il volume d'affari relativo ai sistemi di illuminazione di emergenza.

Rispettivamente, si stima una **riduzione** del **13%** e del **20%** rispetto ai corrispettivi valori del 2019 per i **sistemi antincendio** e quelli di **illuminazione di emergenza**. Questi dati rappresentano una **forte diminuzione** se confrontati con le previsioni dell'anno scorso, dovuta principalmente al perdurare della pandemia da Covid-19.



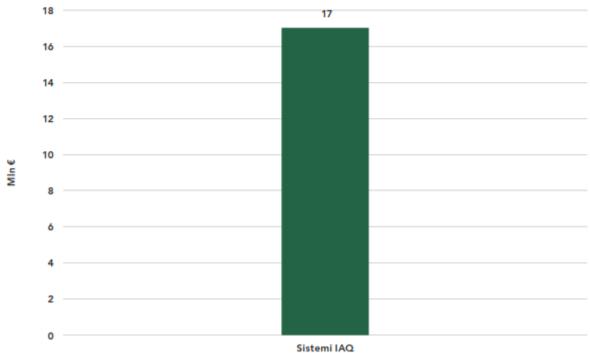
Gli investimenti nel **comparto della sicurezza (security)** per il 2020 si attestano intorno ai **708 mln €**, con una **riduzione** intorno al **3%** rispetto al 2019. Circa il **62%** degli investimenti è rappresentato dal mercato della **videosorveglianza (437 mln €)**, mentre la restante quota è ripartita tra gli impianti **antintrusione (119 mln €)** e **le serrature (152 mln €)**.

Nel comparto security la riduzione percentuale più consistente degli investimenti rispetto al 2019 è stata registrata nel mercato degli impianti antintrusione (-35%), il quale ha risentito particolarmente dell'effetto negativo che la pandemia ha avuto sul settore dell'edilizia. Le tecnologie di videosorveglianza, invece, hanno registrato un segno positivo ed un incremento del 15% rispetto all'anno precedente.



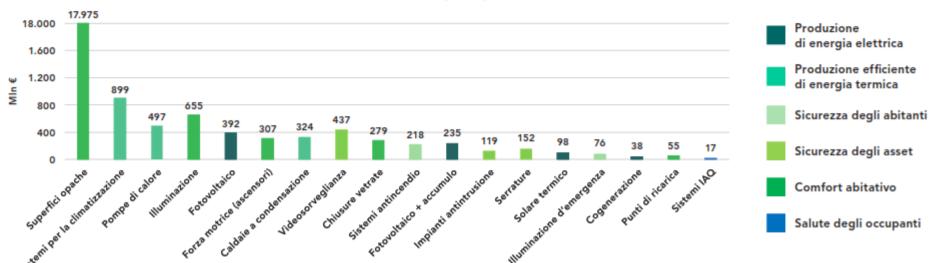
Escludendo le superfici opache, gli investimenti effettuati in **tecnologie per il comfort abitativo** nell'anno 2020 ammontano a circa **1,3 mld €**, dei quali il **51%** è riconducibile ai **sistemi di illuminazione** (pari a 655 mln €). La restante quota è ripartita tra gli impianti di **forza motrice**, che pesano per 307 mln € di investimenti, e le chiusure vetrate (279 mln €): entrambi i comparti hanno subìto una forte **riduzione del volume d'affari** rispetto al 2019 (rispettivamente **-20% e -30%**), a causa del rallentamento dei cantieri durante i primi mesi dello scorso anno.

Anche se ancora marginali, sono in **forte crescita** (+111% rispetto ai valori 2019), gli **investimenti totali nei punti di ricarica**. Il grande incremento in termini percentuali è dovuto ai **volumi di mercato ancora ridotti** e al sempre maggiore diffusione delle **autovetture elettriche** (trainate dagli incentivi statali, tra cui l'Ecobonus).



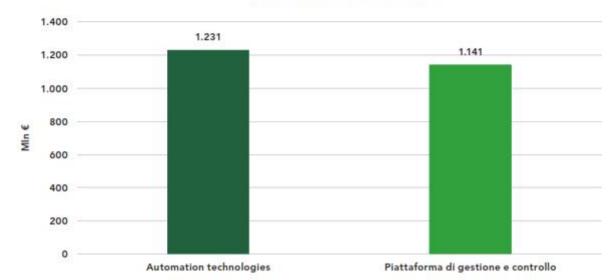
Si registra un'ulteriore crescita del comparto delle **tecnologie per il controllo, il monitoraggio e la gestione della qualità dell'aria** all'interno degli edifici (sistemi IAQ – Indoor Air Quality), nel quale gli investimenti effettuati sono stati stimati intorno ai **17 mln €** nel 2020 in Italia.

L'utilizzo di soluzioni di *Machine learning* e *Intelligenza Artificiale* sarà importante al fine di *ridurre gli extra consumi* dovuti all'implementazione delle azioni necessarie al monitoraggio e alla gestione dell'aria negli ambienti chiusi (ad esempio esclusione dei ricircoli d'aria, aumento dei ricambi d'aria, controllo costante della CO₂).

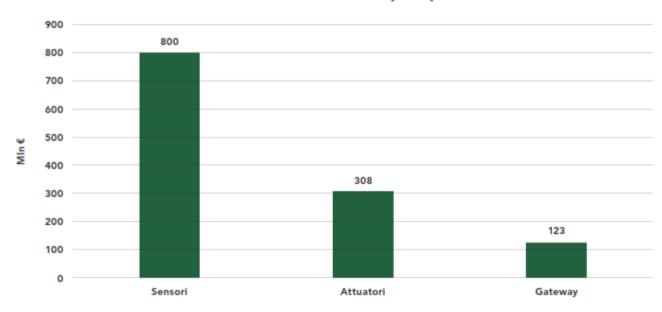


Escludendo le superfici opache, si può notare come dei circa **4,8 mld €** investiti nel 2020, **2,48 mld €** (**52%**) sono riconducibili al comparto *Energy* (tecnologie di produzione di energia elettrica e tecnologie di produzione efficiente di energia termica), a conferma del ruolo prioritario dei temi di **riduzione dei consumi** e di **sostenibilità ambientale** in ambito *Smart Building*.

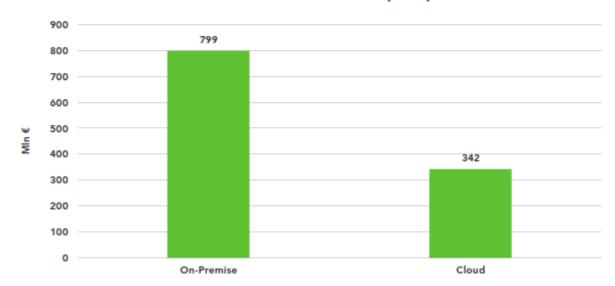
Sono pari a 1,3 mld € gli investimenti realizzati nella categoria Comfort abitativo (27%), così come si attesta intorno a 1 mld € anche il volume di affari relativo al settore Sicurezza degli abitanti e degli asset (21%). Ancora marginale risulta, invece, il contributo delle tecnologie legate alla salute degli occupanti (0,3%).



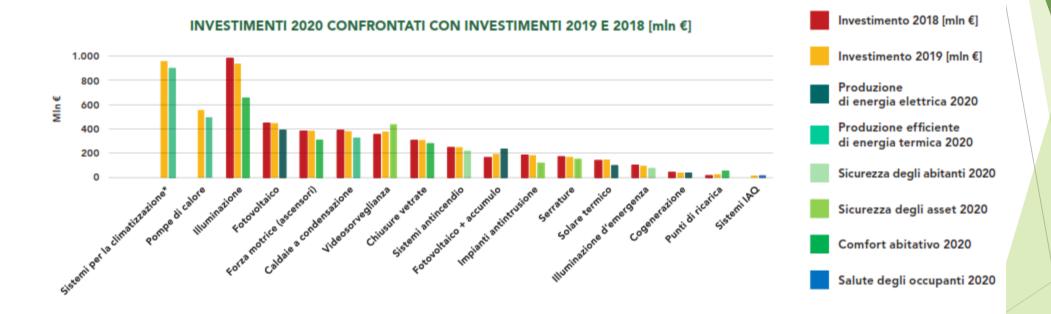
Anche nel 2020, sia gli investimenti in Automation technologies che quelli nelle Piattaforme di gestione e controllo (ossia le componenti hardware e software dell'infrastruttura di gestione e controllo degli Smart Building) si stima abbiano superato 2,3 mld €: nello specifico, gli investimenti in Automation technologies hanno pesato per 1,23 mld €, mentre quelli in Piattaforme di gestione e controllo ammontano a 1,14 mld €.


Per entrambi questi ambiti è stata registrata una leggera **riduzione** degli investimenti rispetto al corrispettivo 2019. Tuttavia, per entrambe il calo risulta essere quasi **la metà di quello subìto mediamente dalle tecnologie del comparto Building Devices and Solutions (-14,3%)**.

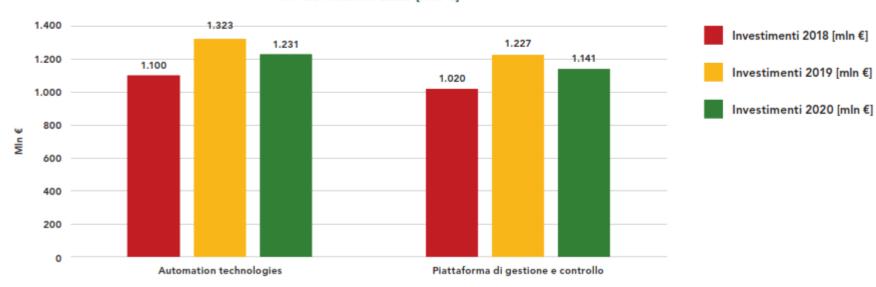
Con riferimento alle *Automation technologies*, la quota più consistente degli investimenti è relativa alla componente di sensoristica, la quale ha prodotto un volume di affari pari a circa 800 mln €, cioè il 65% del totale. Seguono gli investimenti negli attuatori (25%) e infine nei *Gateway*, che sono responsabili di una parte decisamente inferiore del volume d'affari complessivo (10%). Questi valori sono pressoché equivalenti nell'ambito residenziale ed in quello terziario.



Con riferimento alle **Piattaforme di gestione e controllo** la quota maggiore degli investimenti è relativa alle piattaforme di tipo *On-Premise*, la quale si attesta nell'intorno di **799 mln €**, che rappresentano **il 70% del totale**. La restante parte è rappresentata dagli investimenti in Piattaforme di tipo *Cloud*.


Il mercato pare quindi propendere ancora per soluzioni **On-Premise**, ritenute da alcuni operatori più adatte a garantire un sistema di gestione automatizzata del *Building* più sicuro ed affidabile.

Si riporta la visione d'assieme degli investimenti in Building devices and solutions degli ultimi 3 anni, dal 2018 al 2020.



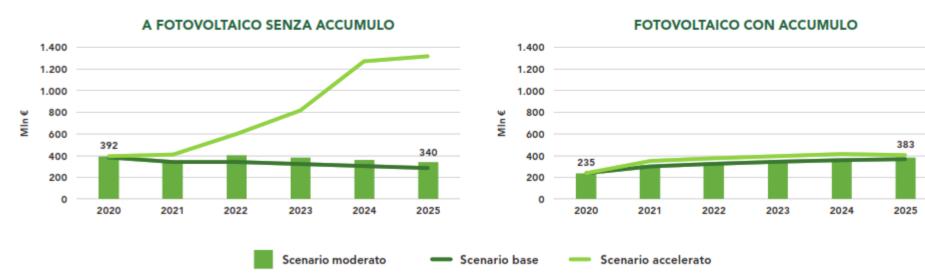
Di seguito sono illustrati i volumi degli **investimenti** per le *Automation technologies* e le Piattaforme di gestione e controllo negli ultimi 3 anni.

Si evidenza nel 2020 un calo degli investimenti rispetto al 2019 in entrambe le aree.

Con riferimento alle tecnologie che abilitano il paradigma *Smart Building*, i cui volumi di affari nell'anno 2020 sono stati descritti nella prima parte di questo capitolo, in questa sezione si presenteranno alcuni possibili **scenari di sviluppo futuro degli investimenti** associati a ciascuna tecnologia. Sarà considerato un orizzonte temporale al **2025** e si farà riferimento a dati consuntivi riferiti alla prima metà del 2021, ove disponibili.

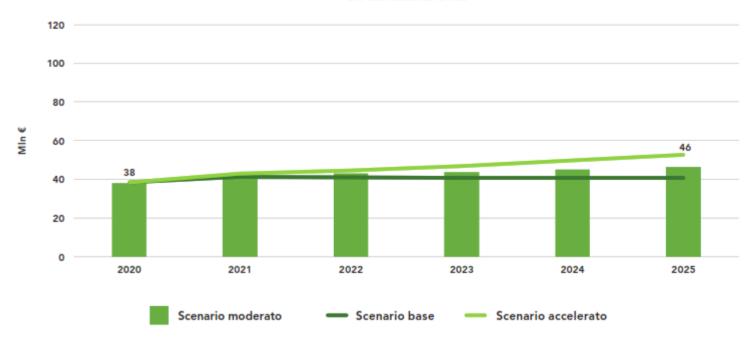
Questi scenari prendono in considerazione diverse variabili, quali: l'impatto del Covid-19, il livello di maturità del comparto tecnologico e la relativa penetrazione del mercato, lo shortage di materie prime, gli sviluppi normativi, gli incentivi fiscali introdotti dal legislatore (tra cui Superbonus, EcoBonus, eccetera) e, infine, la percezione e propensione all'adozione di queste soluzioni da parte degli stakeholder del mercato.

In particolare, per ciascuna tecnologia, sono stati costruiti **tre differenti scenari** al fine di tenere in considerazione l'impatto delle molteplici variabili sopra citate. Pertanto, si definiscono si seguenti scenari:


- Scenario Base: scenario in cui i **potenziali effetti negativi** derivanti dalle variabili considerate (ad esempio, il Covid-19) influenzeranno i volumi di mercato delle varie tecnologie in **maniera preponderante** rispetto ai potenziali effetti positivi derivanti dalle altre variabili considerate (ad esempio, l'incentivazione fiscale);
- Scenario Moderato: scenario in cui vengono presentati i valori di mercato tendenziali del settore;
- Scenario Accelerato: scenario in cui i potenziali effetti negativi derivanti dalle variabili considerate (ad esempio, il Covid-19) influenzeranno i volumi di mercato delle varie tecnologie in maniera limitata rispetto ai potenziali effetti positivi derivanti dalle altre variabili considerate (ad esempio, l'incentivazione fiscale).

Per quanto riguarda il fotovoltaico, lo scenario **moderato**, dal 2022 in poi, considera un **trend** di **crescita della potenza installata analogo** a quello avvenuto negli anni **2018-2019**, mentre lo scenario **accelerato** considera gli investimenti necessari per raggiungere al **2025** gli obiettivi imposti dal **PNIEC** (**28,55 GW** di potenza installata). Si nota come gli investimenti nel fotovoltaico in modalità **stand-alone** subiranno una riduzione a partire dal 2023 nello scenario moderato, in quanto la **riduzione del costo** della potenza installata sarà **maggiore** rispetto all'**incremento della potenza stessa**.

Nonostante la **decrescita** prevista del **costo al kWh** installato dei sistemi **storage**, gli scenari **base e moderato** mostrano un **aumento** degli **investimenti in soluzioni integrate fotovoltaico-accumulo**. Ciò accade a causa dell'incremento di SDA stimato nei prossimi anni (grazie soprattutto a misure statali di incentivazione), seppur ancora non in linea con gli obiettivi posti dal **PNIEC**. Viceversa, lo scenario **accelerato** prevede un'ingente **crescita** dell'adozione di entrambe le soluzioni tecnologiche.



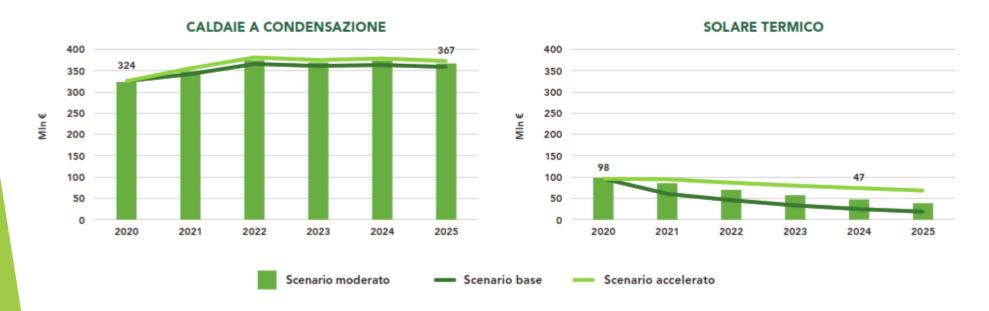
A partire dal **2021 la cogenerazione di piccola taglia**, adatta all'applicazione nei settori residenziale e terziario, risulterà in **lenta ma costante crescita**, agevolata dal passaggio da un sistema di generazione centralizzato ad uno distribuito (Direttiva Europea RED II), dallo sviluppo di mini-reti di teleriscaldamento e dagli incentivi statali (Ecobonus; Certificati Bianchi).

COGENERAZIONE

IL MERCATO DEI BUILDING DEVICES AND SOLUTIONS |

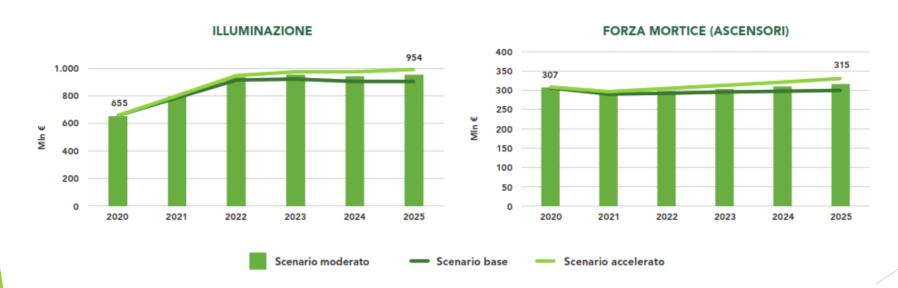
TREND DI CRESCITA FUTURA: TECNOLOGIE DI PRODUZIONE EFFICIENTE DI ENERGIA TERMICA

Per quanto riguarda le pompe di calore, la stima degli investimenti si basa sulle seguenti assunzioni:

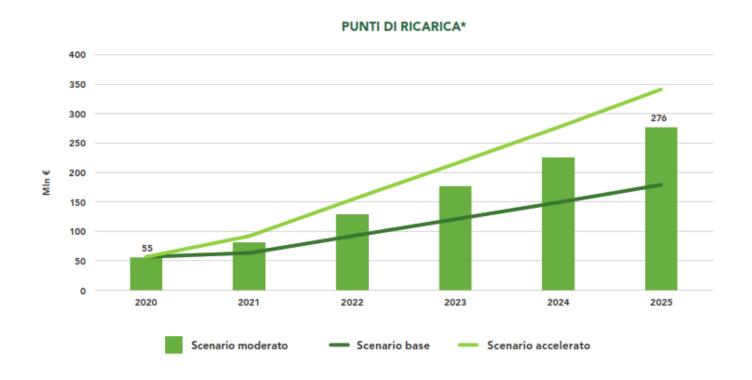

- si valuta esclusivamente l'apporto delle pompe di calore utilizzate per riscaldamento. Sono quindi escluse dalle analisi le tecnologie ad esclusivo utilizzo per il raffrescamento;
- il costo specifico dell'energia termica prodotta da pompe di calore è pari a 6,2 mln€/kTep, sulla base del valore medio di
 costo della tecnologia sul mercato, considerato costante nel periodo 2021-2025;
- lo scenario accelerato considera il raggiungimento dell'obiettivo PNIEC di 4.160 kTep nell'anno 2025.

Si prevede che la diffusione delle pompe di calore attesa per i prossimi anni potrà limitare il trend di crescita dei volumi di investimento relativi ai sistemi per la climatizzazione.

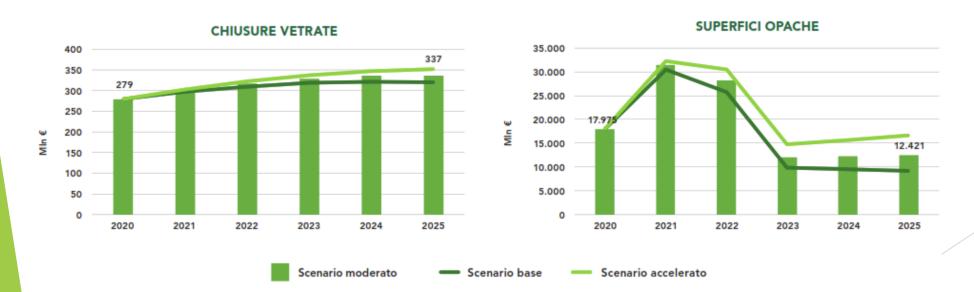
Si stima che gli investimenti in **caldaie a condensazione** possano subire una **crescita** intorno al **16%** nel **prossimo biennio**, per poi assestarsi intorno ad un valore stabile di circa **370 mln € all'anno**. Tale andamento ed il conseguente gap limitato tra i diversi scenari sono da imputarsi principalmente alla **maturità raggiunta dal mercato** e dal **peso sempre minore** rivestito da questa **tecnologia**, in favore di **nuove soluzioni elettrificate**.


Analogamente a quanto accaduto nel triennio 2018-2020, il trend relativo agli investimenti in **solare termico** risulterà **in decrescita** anche nei prossimi anni. Questa diminuzione sarà causata principalmente **dall'elettrificazione** dei consumi e dagli **elevati costi** di installazione e manutenzione dei collettori, che hanno un impatto rilevante soprattutto in ambito **residenziale**.

All'interno del **settore** *Comfort*, dopo il forte rallentamento degli investimenti a causa della crisi sanitaria (-30%), il settore dell'**il- luminazione** sarà oggetto di una modesta ripresa nel corso del **2021** (+21% circa) e del **2022** (+18%), per mantenere negli anni seguenti un *trend* pressoché costante.


Nel **2020**, il mercato della **forza motrice** e degli impianti di sollevamento ha avuto **forti ripercussioni** a causa delle misure restrittive imposte al settore edilizio a seguito della pandemia Covid-19. Nel corso del 2021 è prevista un'ulteriore contrazione degli investimenti e si stima, a partire dall'anno successivo, una crescita **molto lenta e simile nei diversi scenari** considerati, tale da **non raggiungere** nemmeno al **2025** i valori di **investimenti** registrati **prima della pandemia**.

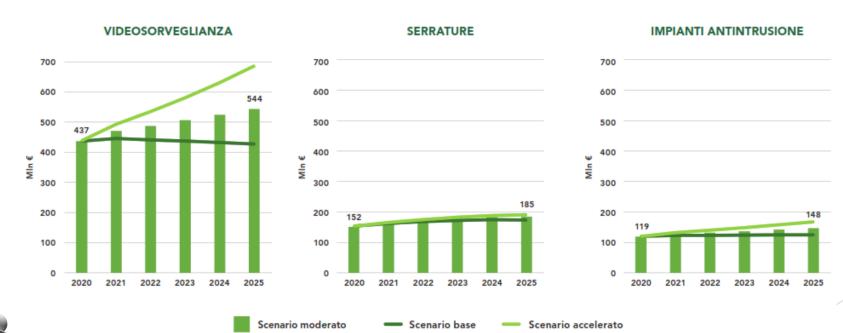
Il mercato delle **colonnine per la ricarica di veicoli elettrici**, invece, risulta in **continua crescita** e sembra non essere stato impattato dalla crisi in atto. Al contrario, si stima che il valore degli investimenti aumenterà esponenzialmente grazie ad una sempre maggiore **diffusione dei punti di ricarica privati**, che raggiungeranno nel **2025** un numero di circa **11 volte superiore rispetto a quello attuale**. I prezzi dei punti di ricarica sono stati considerati costanti nelle proiezioni per gli anni 2021-2025 e pari a quelli del 2020.



A partire dal **2022**, si prevede che il mercato delle **chiusure vetrate** si attesti attorno ai **valori pre-Covid** e che nel **successivo triennio** esso sia caratterizzato da una **crescita costante**, sostenuta dalle incentivazioni attuali.

Riguardo il mercato delle **superfici opache**, si stima nel 2021 una **crescita** del volume di affari di circa il **94%** rispetto all'anno precedente, soprattutto grazie al **Superbonus**, il cui annuncio aveva parzialmente rallentato gli investimenti nel 2020.

Si teme, tuttavia, un **rallentamento** degli stessi investimenti negli anni successivi, a causa della **scarsità di materie prime**, che causerà un conseguente aumento dei prezzi, e della **difficoltà nella programmazione degli investimenti** come conseguenza di incentivi poco chiari e non pianificati in maniera appropriata nel medio termine.



IL MERCATO DEI BUILDING DEVICES AND SOLUTIONS |

TREND DI CRESCITA FUTURA: TECNOLOGIE PER LA SICUREZZA DEGLI ASSET

Riguardo le tecnologie funzionali a garantire la **sicurezza degli asset** all'interno del Building, è stato stimato che esse saranno caratterizzate da una **crescita lenta ma costante** a partire dal **2021**, in linea con quanto mostrato nel triennio antecedente la pandemia.

IL MERCATO DEI BUILDING DEVICES AND SOLUTIONS

TREND DI CRESCITA FUTURA: TECNOLOGIE PER LA SICUREZZA DELLE PERSONE

Passando alle tecnologie funzionali a garantire la sicurezza delle persone all'interno del Building, si riportano i trend degli investimenti per i sistemi antincendio e i dispositivi di illuminazione d'emergenza. Per i primi si prevede un trend crescente, più o meno accentuato a seconda dello scenario ipotizzato. Per i secondi invece, a fronte di un mercato ormai maturo, si prevede un trend pressoché costante a partire dal 2022, con un divario contenuto tra i diversi scenari.

IL MERCATO DEI BUILDING DEVICES AND SOLUTIONS |

TREND DI CRESCITA FUTURA: TECNOLOGIE PER LA SALUTE DEGLI OCCUPANTI

Scenario moderato

L'impatto della crisi sanitaria ha consentito un **rapido boost** degli investimenti per le tecnologie volte a garantire la **salute degli occupanti nello Smart Building**. In particolare sono qui considerati i **sistemi di Indoor Air Quality**: se fino al 2018 i volumi di investimenti erano trascurabili, nel **2020** hanno raggiunto i **17 MIn €**.

Si stima che la **crescita** di questo settore possa essere **più rilevante nel biennio 2020-2021**, per poi rimanere stabile o in leggera crescita, fino a raggiungere i **23 mln € nel 2025 (+35% rispetto al 2020)**. Il tema della salubrità dell'aria *indoor* è stato reso rilevante dall'attuale pandemia e lo scenario accelerato prevede pertanto un **cambio di visione** nei confronti dei sistemi di monitoraggio *IAQ*, sia nel settore **residenziale** che nel **terziario (+50% di investimenti nel 2025)**.

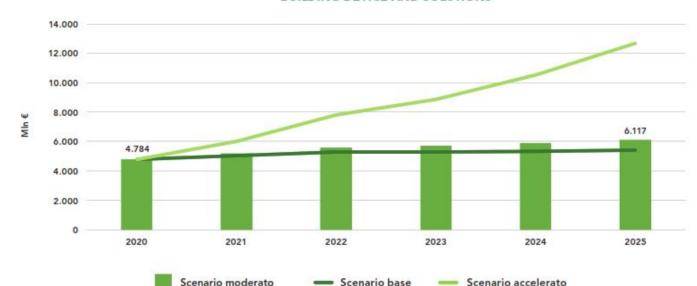
SISTEMI IAQ 25 20 17 15 10 20 20 20 2020 2021 2022 2023 2024 2025

Scenario base

Scenario accelerato

Scenario moderato

IL MERCATO DEI BUILDING DEVICES AND SOLUTIONS |


TREND DI CRESCITA FUTURA: QUADRO SINOTTICO

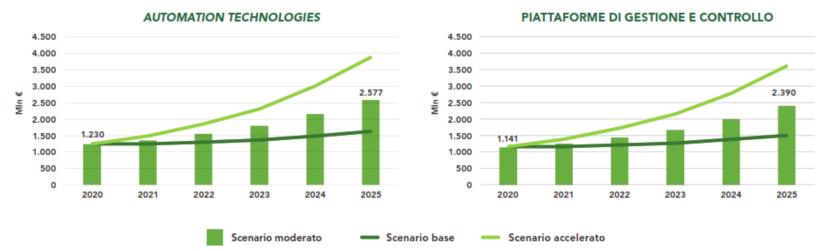
Si offre di seguito una visione d'insieme del comparto Building devices and solutions, escludendo le superfici opache, in cui i volumi d'affari sono di un ordine di grandezza superiore e altererebbero quindi l'analisi comparativa.

Nello scenario moderato, dopo il rallentamento dovuto alla crisi pandemica, si registrerà una crescita degli investimenti a partire dal 2021, per ritornare a valori pre-Covid non prima del 2024.

Lo scenario accelerato è la conseguenza di diversi fattori che produrranno un ampliamento del mercato, tra i quali le Energy Communities e gli incentivi relativi alle tecnologie di efficienza energetica, come Superbonus ed Ecobonus.

BUILDING DEVICE AND SOLUTIONS

Scenario base



IL MERCATO DELLE AUTOMATION TECHNOLOGIES E DELLE PIATTAFORME

TREND DI CRESCITA FUTURA

Come avvenuto per il 2020, sia il comparto delle *Automation technologies* che le *Piattaforme di gestione e controllo* risentiranno in maniera più contenuta della crisi pandemica. Si conferma la stima fatta lo scorso anno: il volume di investimenti nello **scenario moderato** registrerà una **crescita** media del **16%** annuo.

Sulla base delle stime elaborate, il mercato della sensoristica e degli attuatori potrebbe attestarsi intorno a 2,6 mld € nel 2025, mentre le piattaforme di raccolta, elaborazione e analisi dei dati potrebbero raggiungere valori pari a 2,4 mld €.

Scenario moderato

IL MERCATO DELLE AUTOMATION TECHNOLOGIES |

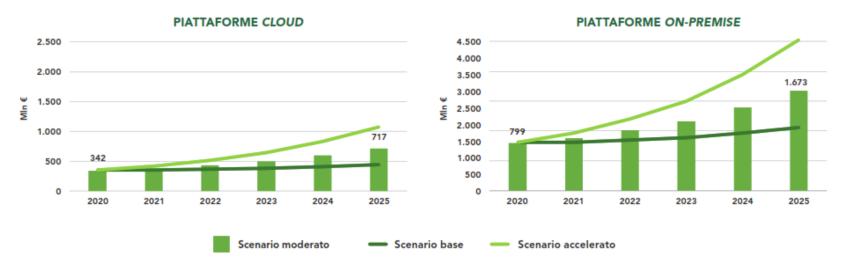
TREND DI CRESCITA FUTURA: SENSORI, ATTUATORI, GATEWAY

Per tutte le tre tecnologie relative al comparto delle *Automation technologies* si prevede una **crescita costante** a partire dal **2021**, in tutti gli scenari ipotizzati. In particolare, per le tre tecnologie è stato stimato un incremento medio nel periodo **2021-2025** del **6%** nello **scenario base**, del **16%** nello **scenario moderato**, del **26%** nello **scenario accelerato**.

Al 2025, pertanto, si stima rimarranno pressoché **invariate** i pesi percentuali registrati nell'anno 2020. La parte di **sensoristica** ricoprirà circa il 60% del mercato totale relativo alle *Automation Technologies*, per un ammontare complessivo di circa 1,67 mld €. Seguiranno gli attuatori, i cui investimenti ammonteranno a 644 mln €, e infine i *Gateway*, che ricopriranno una quota di mercato del 10% (258 mln €).

Scenario base

Scenario accelerato

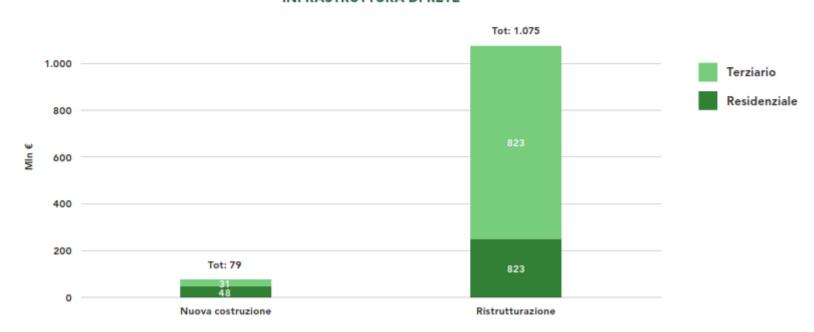


IL MERCATO DELLE PIATTAFORME DI CONTROLLO E GESTIONE |

TREND DI CRESCITA FUTURA: CLOUD E ON-PREMISE

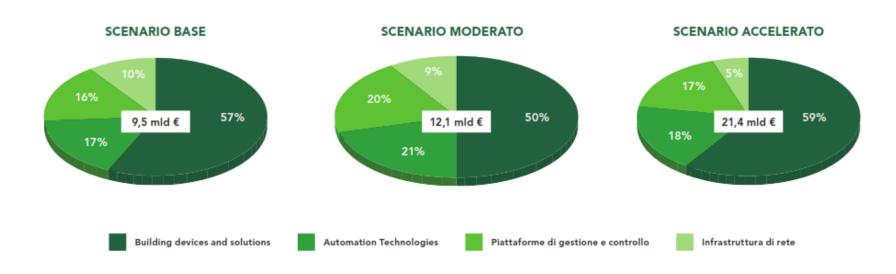
Per entrambe le tipologie di Piattaforme di controllo e gestione di uno *Smart Building* si prevede una **crescita costante** a partire **dal 2021**, in tutti gli scenari ipotizzati.

Si stima che il **volume di investimenti** in piattaforme *On-premise* possa **raddoppiare nei prossimi cinque anni**, raggiungendo un valore di oltre **1,6 miliardi di euro**. Il volume di investimenti in piattaforme *Cloud* seguirà un *trend* di crescita analogo, con un mercato di oltre **700 milioni di euro**.



In particolare, sebbene la quota più consistente di investimenti sarà ancora riferita agli **edifici ristrutturati (93% del totale)**, si stima che si registrerà un'inversione di tendenza per quanto concerne la sua ripartizione nei segmenti residenziale e terziario.

INFRASTRUTTURA DI RETE



Di seguito è riportata la visione d'assieme degli investimenti annui nel 2025 per i tre scenari considerati:

- nello scenario base l'ammontare totale di investimenti è pari a 9,5 mld €, il 57% dei quali si riferisce alla componente Building devices and solutions;
- nello **scenario moderato** l'ammontare totale di investimenti è pari a **12,1 mld €**, in cui una quota pari al 21% si riferisce alle *Piattaforme di gestione e controllo*;
- nello scenario accelerato l'ammontare totale di investimenti è pari a 21,4 mld €.

