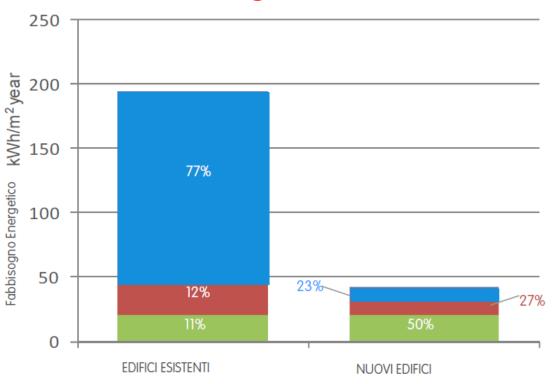


Sistemi evoluti che generano comfort e risparmio energetico attraverso la qualità dell'aria

Marco Grisot

Product Marketing Manager

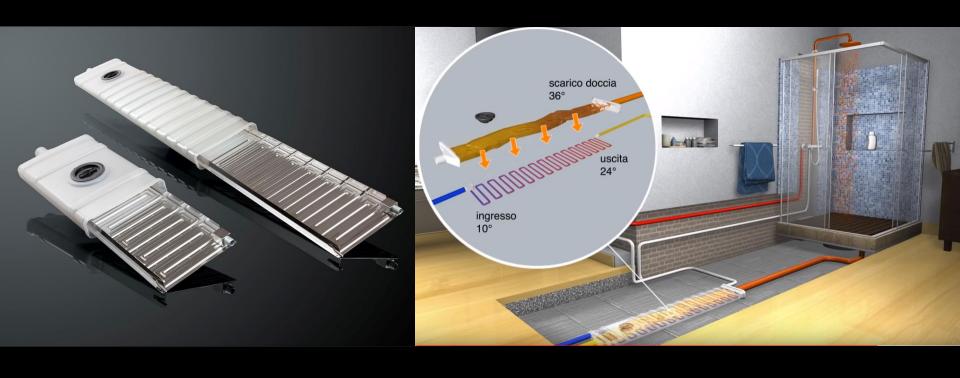


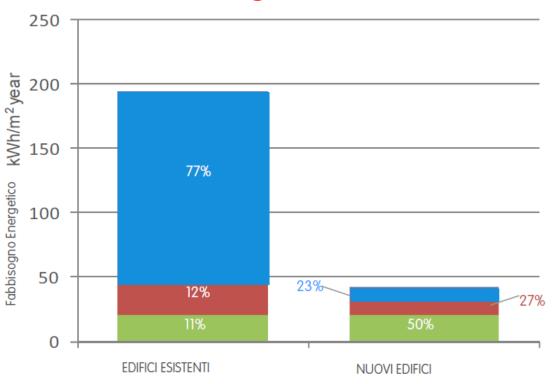
Evoluzione fabbisogno edifici

L'isolamento termico <u>riduce</u> <u>enormemente</u> i fabbisogni per trasmissione.

La ventilazione meccanica controllata diventa una necessità indispensabile per la <u>vivibilità</u> e per il <u>recupero energetico</u>.

L'acqua calda sanitaria è una <u>voce importante</u> nel totale del fabbisogno energetico.





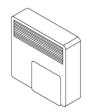
Revisione 11300-2:2019 – BEE riduce di 1/3 il fabbisogno di ACS

Evoluzione fabbisogno edifici

L'isolamento termico <u>riduce</u> <u>enormemente</u> i fabbisogni per trasmissione.

La ventilazione meccanica controllata diventa una necessità indispensabile per la <u>vivibilità</u> e per il <u>recupero energetico</u>.

L'acqua calda sanitaria è una <u>voce importante</u> nel totale del fabbisogno energetico.


Configurazioni


A vista con mandata verticale.

H A vista con mandata orizzontale.

IN Ad incasso.

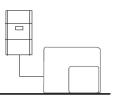
PI Semi incasso.

STØNE

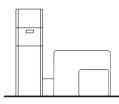
STØNE

Versione monoblocco

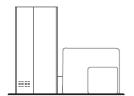
Monoblocco.



Versione split, in due sezioni


Split con Tower.

Split con Concealed.



ENER.LOC è organizzato da Partner

n° 3 Nuovi edifici

N° Appartamenti: 50

Tagli medi: 80-100 mq (3-5 persone)

Anno di realizzazione 2017-2018

Località: Viterbo (VT) – zona clim. B

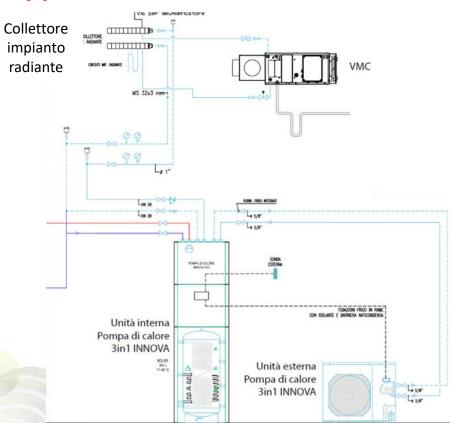
T di progetto invernale/estiva: -2°C / 31°C

UNA SCELTA DI VALORE: Impianti autonomi in pompa di calore

Indipendenza energetica appartamento per appartamento ☐ Impianto tutto elettrico (sicurezza ed efficienza) Impianto fotovoltaico autonomo Semplificazione impiantistica Eliminazione delle complessità e perdite energetiche di una centrale termica centralizzata ☐ Riduzione delle tempistiche di cantiere (installazione) Elevati standard di comfort □ Rinnovo e Purificazione dell'aria Riscaldamento, Raffreddamento e Deumidificazione ☐ Impianto radiante **Efficienza** □ Sistemi ad energia rinnovabile a costi "accessibili" ☐ Parziale autoproduzione dell'energia per il comfort ☐ Massima Classe di efficienza dell'edificio ENER.LOC è organizzato da Con il sostegno di edilportale enel

UNA SCELTA CHE SI GIUSTIFICA: costi impianti a confronto

Investimenti Impianto centralizzato		Investimenti Impianto autonomo	
Pompa di calore:	21%	Pompa di calore compatta	84%
Caldaia a condensazione	2%	Minuteria idraulica	4%
Solare Termico	8%	Coibentazione tubi	3%
Circolatore termico	1%		
Circolatore ACS	1%		
Puffer 800L	1%		
Serbatoio ACS	1%		
Coibentazione fino colonne	16%		
Scambiatore a piastre	5%		
Contabilizzazione	12%		
Minuteria idraulica	10%		
Colonne Montanti	3%		
Isolamento colonne	4%		
Materiali	82%	Materiali	91%
Manodopera	18%	Manodopera	8%
Totale x 12 appartamenti	100%	Totale x 12 appartamenti	99%
Appartamenti			
PER OGNI APPARTAMENTO	8,33%	PER OGNI APPARTAMENTO	8,28%


la semplificazione del cantiere (assenza della centrale termica, di reti di distribuzione, di contabilizzazione, ecc.) e la velocità di installazione si traducono per l'impresa in un notevole risparmio

L'impianto dell'appartamento

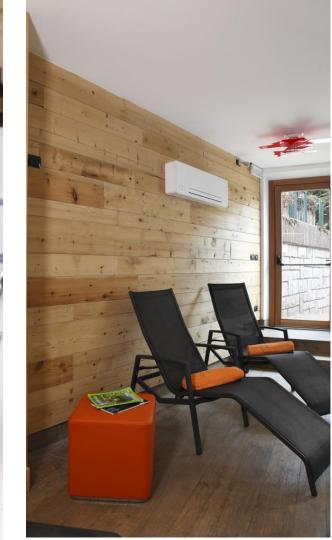
Contattore elettrico 6kW monofase

Impianto fotovoltaico autonomo

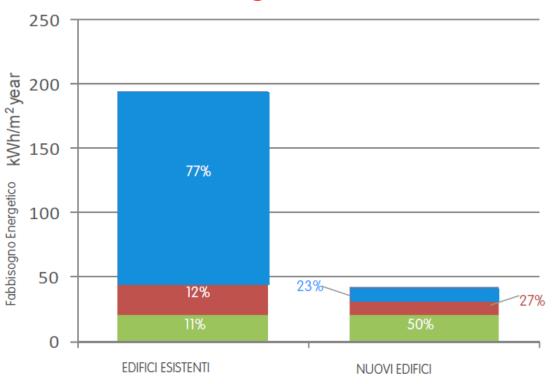
Da 1,5 a 3 kWp (in funzione m² app.to)

Sistema di distribuzione con pannelli radianti a pavimento

Pompa di calore aria/acqua


Riscaldamento Raffrescamento Acqua calda sanitaria

VMC con deumidificatore integrato

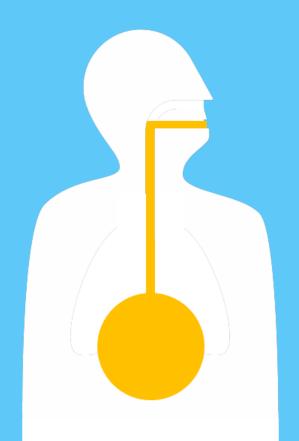


Evoluzione fabbisogno edifici

L'isolamento termico <u>riduce</u> <u>enormemente</u> i fabbisogni per trasmissione.

La ventilazione meccanica controllata diventa una necessità indispensabile per la <u>vivibilità</u> e per il <u>recupero energetico</u>.

L'acqua calda sanitaria è una <u>voce importante</u> nel totale del fabbisogno energetico.



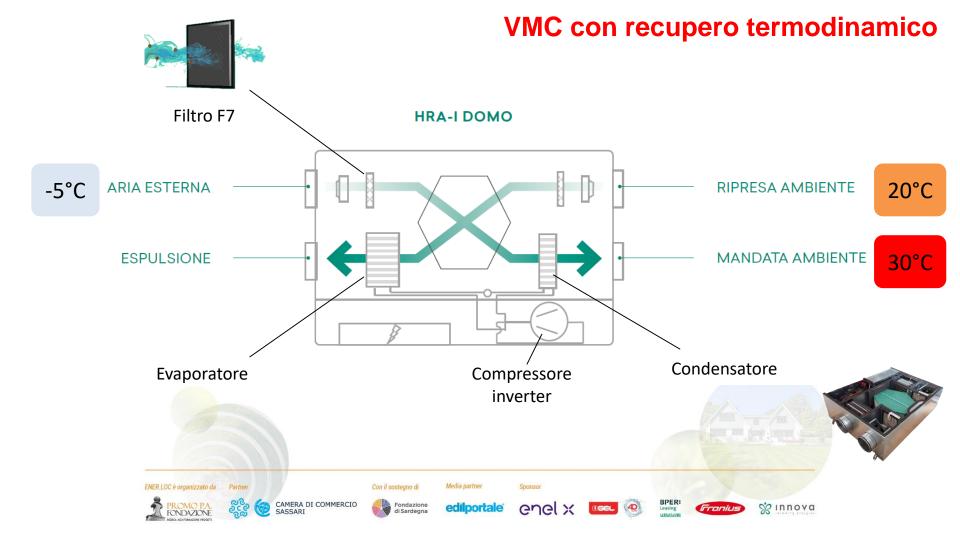
IL CONSUMO MEDIO PROCAPITE QUOTIDIANO DI CIBO E' PARI A CIRCA

2 LITRI

IL CONSUMO MEDIO PROCAPITE QUOTIDIANO DI ARIA E' PARI A CIRCA

8.000 LITRI

Fondazione di Sardegna



Recuperatore Temodinamico (in pompa di calore)

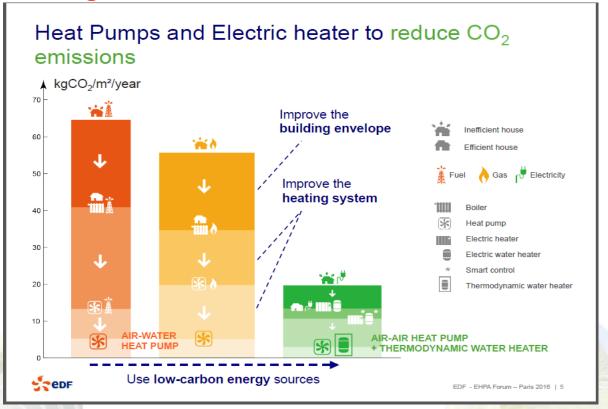
RECUPERO EFFICIENTE IN INVERNO ED IN ESTATE

CONTRIBUISCE AL RISCALDAMENTO E RAFFREDDAMENTO DEGLI AMBINETI

NELLE MEZZE STAGIONI VIENE UTILIZZATO COME UNICO SISTEMA PER RISC E RAFF

SODDISFA FINO AL 50-80% DEL FABBISOGNO ENERGETICO

ESTREMAMENTE EFFICIENTE PERCHE' LA SORGENTE TERMICA E' L'ARIA ESTRATTA



Evoluzione fabbisogno edifici

Media partner

HEAT PUMPS IN COLLECTIVE HOUSING

Heat Pump Foru

15-16th May 2019

Air to air individual heat pump

Air-to-Air indoor Heat Pump

only for main room One or two holes in an external wall Mainly dedicated to direct electric heating retrofit

Conclusion

- Technical solutions exist for all configurations
- Some complex demonstrators are counterproductive → <u>Focus on simple and easy</u> to duplicate solutions :
 - Only Heat Pump Systems
 - Introduction of heat pumping solutions for 1 service (heating or DHW)
 - · Refurbishment of old collective boilers with collective systems "plug & heat"
- Regulations are evoluting (low consumption, renewables uses, etc.) and could rapidly offset high capital costs

Heat Pumps in Collective Housing must be and are going to be... a reality!

POMPA DI CALORE ARIA/ARIA <u>SENZA UNITA' ESTERNA</u>

SEMPLICE

si installa con facilità anche da operatori poco esperti, senza impatto estetico

SICURO

Refrigerante naturale in basse quantità, circuito ermetico

EFFICIENTE

è una pompa di calore che utilizza energia rinnovabile, non emette CO₂

RIQUALIFICAZIONE ALBERGO IN UK

"2.0 è la soluzione perfetta per i nostri hotel. Abbiamo installato 45 unità in meno di due settimane, pur avendo le stanze occupate. Semplici da installare ed estremamente silenziosi. che consentono ai nostri ospiti di dormire notti tranquille e confortevoli. Visto il recente successo, confidiamo di installare queste unità riqualificando molti dei nostri hotel.

Rob Reeves QHotels M & E Consultant

Case Study 5


The Meridian Cove — Vancouver Decentralized, through-wall Air Conditioner & Heat Pump with integrated fan coil

Building Description

Address	2201 Pine Street, Vancouver
Ownership	Condo, Strata Council
Type of Building	Mid-rise multi-unit residential
Year of Construction	1991
Number of units	125

Constructed in 1991, the Meridian Cove is an 11 storey, 125 unit, concrete frame residential building in Vancouver's Fairview neighbourhood. It is a luxurious condo with a faceted, brick veneer facade with bay windows and a terraced roof plan. The building has electric baseboard heating but no air conditioning.

Challange

East side of the Meridian

Innova 2.0 unit installed on an exterior wall at a Meridian Cove condo unit.

Outside duct holes with vent covers and a small drain pipe on the balcony of the condo unit (vent covers not yet painted).

Fondazione

